Мой бизнес - Франшизы. Рейтинги. Истории успеха. Идеи. Работа и образование
Поиск по сайту

С чего начинается переработка нефти. Вторичная переработка отходов

Нефть разделяется на фракции для получения нефтепродуктов в два этапа, то есть перегонка нефти проходит через первичную и вторичную обработку.

Процесс первичной нефтепереработки

На этом этапе перегонки производится предварительное обезвоживание и обессоливание сырой нефти на специальном оборудовании для выделения солей и остальных примесей, которые могут вызывать коррозию аппаратуры и снижать качество продуктов нефтепереработки. После этого в нефти содержится всего 3-4 мг солей на литр и не более 0,1 % воды. Подготовленный продукт готов к перегонке.

По причине того, что жидкие углеводороды кипят при различной температуре, это свойство используется при перегонке нефти, чтобы выделить из нее отдельные фракции при разных фазах кипения. Перегонка нефти на первых нефтеперерабатывающих предприятиях давала возможность выделять следующие фракции в зависимости от температуры: бензин (выкипает при 180°С и ниже), реактивное топливо (выкипает при 180-240°С) и дизтопливо (выкипает при 240-350°С). От перегонки нефти остается мазут.

В процессе перегонки нефть разделяется по на фракции (составные части). В результате получаются товарные нефтепродукты или их компоненты. Перегонка нефти является начальным этапом ее переработки на специализированных заводах.

При нагревании образуется паровая фаза, состав которой отличен от жидкости. Получаемые перегонкой нефти фракции обычно являются не чистым продуктом, а смесью углеводородов. Отдельные углеводороды удается выделить только благодаря многократной перегонке нефтяных фракций.

Прямая перегонка нефти выполняется

Методом однократного испарения (так называемая, равновесная дистилляция) или простой перегонки (фракционная дистилляция);

С использованием ректификации и без нее;

С помощью испаряющего агента;

Под вакуумом и при атмосферном давлении.

Равновесная дистилляция менее четко разделяет нефть на фракции, чем простая перегонка. При этом в парообразное состояние при одинаковой температуре в первом случае переходит больше нефти, чем во втором.

Фракционная перегонка нефти дает возможность получить различное для дизельных и реактивных двигателей), а также сырье (бензол, ксилолы, этилбензол, этилен, бутадиен, пропилен), растворители и другие продукты.

Процесс вторичной нефтепереработки

Вторичная перегонка нефти проводится способом химического или термического каталитического расщепления тех продуктов, что выделены из нее в результате первичной нефтеперегонки. При этом получается большее количество бензиновых фракций, а также сырье для производства ароматических углеводородов (толуола, бензола и других). Самой распространенной технологией вторичной нефтепереработки нефти является крекинг.

Крекингом называют процесс высокотемпературной переработки нефти и выделенных фракций для получения (в основном) продуктов, у которых меньшая К ним можно отнести моторное топливо, масла для смазки и т. п., сырье для нефтехимической и химической промышленности. Протекание крекинга проходит с разрывом С—С связей и образованием карбанионов или свободных радикалов. Разрыв связей С—С выполняется одновременно с дегидрированием, изомеризацией, полимеризацией и конденсацией промежуточных и исходных веществ. Последние два процесса образуют крекинг-остаток, т.е. фракцию с температурой кипения выше 350°C и кокс.

Перегонка нефти методом крекинга была запатентована в 1891 году В. Г. Шуховым и С. Гавриловым, затем эти инженерные решения повторил У. Бартон при сооружении в США первой промышленной установки.

Крекинг проводится посредством нагревания сырья или воздействия катализаторов и высокой температуры.

Крекинг позволяет выделить из мазута больше полезных составляющих.

Сергей Пронин

Продукты первичной переработки нефти, как правило, не являются товарными нефтепродуктами. Например, октановое число бензиновой фракции составляет около 65 пунктов, содержание серы в дизельной фракции может достигать 1,0% и более, тогда как норматив составляет, в зависимости от марки, от 0,005% до 0,2%. Кроме того, тёмные нефтяные фракции могут быть подвергнуты дальнейшей квалифицированной переработке.

В связи с этим, нефтяные фракции поступают на установки вторичных процессов, призванные осуществить улучшение качества нефтепродуктов и углубление переработки нефти.

Приведённые в статье параметры технологических режимов, размеров аппаратов, выходов продуктов в целом приводятся справочно, так как в каждом конкретном случае могут варьироваться в зависимости от качества сырья, заданных параметров продуктов, выбранного аппаратурного оформления, типов применяемых катализаторов и других факторов.

Углеводороды, входящие в состав нефти и нефтепродуктов

Поскольку при описании процессов вторичной переработки используются наименования групп углеводородов, входящих в состав нефти и нефтепродуктов, приведём краткие описания данных групп и влияние углеводородного состава на показатели качества нефтепродуктов.

Парафины - насыщенные (не имеющие двойных связей между атомами углерода) углеводороды линейного или разветвлённого строения. Подразделяются на следующие основные группы:

1. Нормальные парафины, имеющие молекулы линейного строения. Обладают низким октановым числом и высокой температурой застывания, поэтому многие вторичные процессы нефтепереработки предусматривают их превращение в углеводороды других групп.

2. Изопарафины - с молекулами разветвленного строения. Обладают хорошими антидетонационными характеристиками (например, изооктан - эталонное вещество с октановым числом 100) и пониженной, по сравнению с нормальными парафинами, температурой застывания.

Нафтены (циклопарафины) - насыщенные углеводородные соединения циклического строения. Доля нафтенов положительно влияет на качество дизельных топлив (наряду с изопарафинами) и смазочных масел. Большое содержание нафтенов в тяжёлой бензиновой фракции обуславливает высокий выход и октановое число продукта риформинга.

Ароматические углеводороды - ненасыщенные углеводородные соединения, молекулы которых включают в себя бензольные кольца, состоящие из 6 атомов углерода, каждый из которых связан с атомом водорода или углеводородным радикалом. Оказывают отрицательное влияние на экологические свойства моторных топлив, однако обладают высоким октановым числом. Поэтому процесс, направленный на повышение октанового числа прямогонных фракций - каталитический риформинг, предусматривает превращение других групп углеводородов в ароматические. При этом предельное содержание ароматических углеводородов и, в первую очередь, бензола в бензинах ограничивается стандартами.

Олефины - углеводороды нормального, разветвлённого, или циклического строения, в которых связи атомов углерода, молекулы которых содержат двойные связи между атомами углерода. Во фракциях, получаемых при первичной переработке нефти, практически отсутствуют, в основном содержатся в продуктах каталитического крекинга и коксования. Ввиду повышенной химической активности, оказывают отрицательное влияние на качество моторных топлив.

Рис.8. Структурные формулы молекул углеводородов, относящихся к различным группам

1. Каталитический риформинг

Каталитический риформинг предназначен для повышения октанового числа прямогонных бензиновых фракций путём химического превращения углеводородов, входящих в их состав, до 92-100 пунктов. Процесс ведётся в присутствии алюмо-платино-рениевого катализатора. Повышение октанового числа происходит за счёт увеличения доли ароматических углеводородов. Научные основы процесса разработаны нашим соотечественником - выдающимся русским химиком Н.Д.Зелинским в начале ХХ века.

Выход высокооктанового компонента составляет 85-90% на исходное сырьё. В качестве побочного продукта образуется водород, который используется на других установках НПЗ, которые будут описаны ниже.

Мощность установок риформинга составляет от 300 до 1000 тыс. тонн и более в год по сырью.

Оптимальным сырьём является тяжёлая бензиновая фракция с интервалами кипения 85-180°С. Сырьё подвергается предварительной гидроочистке - удалению сернистых и азотистых соединений, даже в незначительных количествах необратимо отравляющих катализатор риформинга.

Установки риформинга существуют 2-х основных типов - с периодической (рис. 9,10) и непрерывной (рис.11) регенерацией катализатора - восстановлением его первоначальной активности, которая снижается в процессе эксплуатации. В России для повышения октанового числа в основном применяются установки с периодической регенерацией, но в 2000-х гг. в Кстово и Ярославле введены установки и с непрерывной регенерацией, которые эффективнее технологически (возможно получения компонента с октановым числом 98-100), однако, стоимость их строительства выше.

Процесс осуществляется при температуре 500-530°С и давлении 18-35 атм (2-3 атм на установках с непрерывной регенерацией). Основные реакции риформинга поглощают существенные количества тепла, поэтому процесс ведется последовательно в 3-4 отдельных реакторах, объёмом от 40 до 140 м3, перед каждым из которых продукты подвергаются нагреву в трубчатых печах. Выходящая из последнего реактора смесь отделяется от водорода, углеводородных газов и стабилизируется. Полученный продукт - стабильный риформат охлаждается и выводится с установки.

При регенерации осуществляется выжиг образующегося в ходе эксплуатации катализатора кокса с поверхности катализатора с последующим восстановлением водородом и ряд других технологических операций. На установках с непрерывной регенерацией катализатор движется по реакторам, расположенным друг над другом, затем подаётся на блок регенерации, после чего возвращается в процесс.

Каталитический риформинг на некоторых НПЗ используется также в целях производства ароматических углеводородов - сырья для нефтехимической промышленности. Продукты, полученные в результате риформинга узких бензиновых фракций, подвергаются разгонке с получением бензола, толуола и смеси ксилолов (сольвента).

2. Каталитическая изомеризация

Изомеризация также применяется для повышения октанового числа легких бензиновых фракций. Сырьём изомеризации являются легкие бензиновые фракции с концом кипения 62°С или 85°C. Повышение октанового числа достигается за счёт увеличения доли изопарафинов. Процесс осуществляется в одном реакторе при температуре, в зависимости от применяемой технологии, от 160 до 380°C и давлении до 35 атм.

На некоторых заводах, после ввода новых установок риформинга крупной единичной мощности, старые установки мощностью 300-400 тыс. тонн в год перепрофилируют на изомеризацию. Иногда риформинг и изомеризация объединяются в единый комплекс по производству высокооктановых бензинов.

3. Гидроочистка дистиллятов

Задача процесса - очистка бензиновых, керосиновых и дизельных фракций, а также вакуумного газойля от сернистых и азотсодержащих соединений. На установки гидроочистки (рис. 12) могут подаваться дистилляты вторичного происхождения с установок крекинга или коксования, в таком случае идет также гидрирование олефинов. Мощность установок составляет от 600 до 3000 тыс. тонн в год. Водород, необходимый для реакций гидроочистки, поступает с установок риформинга.

Сырьё смешивается с водородсодержащим газом (далее - ВСГ) концентрацией 85-95% об., поступающим с циркуляционных компрессоров, поддерживающих давление в системе. Полученная смесь нагревается в печи до 280-340°C, в зависимости от сырья, затем поступает в реактор (рис. 13). Реакция идет на катализаторах, содержащих никель, кобальт или молибден под давлением до 50 атм. В таких условиях происходит разрушение сернистых и азотсодержащих соединений с образованием сероводорода и аммиака, а также насыщение олефинов. В процессе за счет термического разложения образуется незначительное (1,5-2%) количество низкооктанового бензина, а при гидроочистке вакуумного газойля также образуется 6-8% дизельной фракции. Продуктовая смесь отводится из реактора, отделяется в сепараторе от избыточного ВСГ, который возвращается на циркуляционный компрессор. Далее отделяются углеводородные газы, и продукт поступает в ректификационную колонну, с низа которой откачивается гидрогенизат - очищенная фракция. Содержание серы, например, в очищенной дизельной фракции, может снизиться с 1,0% до 0,005-0,03%. Газы процесса подвергаются очистке с целью извлечения сероводорода, который поступает на производство серы, или серной кислоты.

4. Каталитический крекинг

Каталитический крекинг - важнейший процесс нефтепереработки, существенно влияющий на эффективность НПЗ в целом. Сущность процесса заключается в разложении углеводородов, входящих в состав сырья (вакуумного газойля) под воздействием температуры в присутствии цеолитсодержащего алюмосиликатного катализатора. Целевой продукт установки КК - высокооктановый компонент бензина с октановым числом 90 пунктов и более, его выход составляет от 50 до 65% в зависимости от используемого сырья, применяемой технологии и режима. Высокое октановое число обусловлено тем, что при каткрекинге происходит также изомеризация. В ходе процесса образуются газы, содержащие пропилен и бутилены, используемые в качестве сырья для нефтехимии и производства высокооктановых компонентов бензина, легкий газойль - компонент дизельных и печных топлив, и тяжелый газойль - сырьё для производства сажи, или компонент мазутов.

Мощность современных установок в среднем - от 1,5 до 2,5 млн тонн, однако на заводах ведущих мировых компаний существуют установки мощностью и 4,0 млн. тонн.


Сущность нефтеперерабатывающего производства
Процесс переработки нефти можно разделить на 3 основных этапа:
1. Разделение нефтяного сырья на фракции, различающиеся по интервалам температур кипения (первичная переработка) ;
2. Переработка полученных фракций путем химических превращений содержащихся в них углеводородов и выработка компонентов товарных нефтепродуктов (вторичная переработка) ;
3. Смешение компонентов с вовлечением, при необходимости, различных присадок, с получением товарных нефтепродуктов с заданными показателями качества (товарное производство) .
Продукцией НПЗ являются моторные и котельные топлива, сжиженные газы, различные виды сырья для нефтехимических производств, а также, в зависимости от технологической схемы предприятия - смазочные, гидравлические и иные масла, битумы, нефтяные коксы, парафины. Исходя из набора технологических процессов, на НПЗ может быть получено от 5 до более, чем 40 позиций товарных нефтепродуктов.
Нефтепереработка - непрерывное производство, период работы производств между капитальными ремонтами на современных заводах составляет до 3-х лет. Функциональной единицей НПЗ является технологическая установка - производственный объект с набором оборудования, позволяющего осуществить полный цикл того или иного технологического процесса.
В данном материале кратко описаны основные технологические процессы топливного производства - получения моторных и котельных топлив, а также кокса.

Поставка и приём нефти
В России основные объёмы сырой нефти, поставляемой на переработку, поступают на НПЗ от добывающих объединений по магистральным нефтепроводам. Небольшие количества нефти, а также газовый конденсат, поставляются по железной дороге. В государствах-импортёрах нефти, имеющих выход к морю, поставка на припортовые НПЗ осуществляется водным транспортом.
Принятое на завод сырьё поступает в соответствующие емкости товарно-сырьевой базы (рис.1), связанной трубопроводами со всеми технологическими установками НПЗ. Количество поступившей нефти определяется по данным приборного учёта, или путём замеров в сырьевых емкостях.

Подготовка нефти к переработке (электрообессоливание)
Сырая нефть содержит соли, вызывающие сильную коррозию технологического оборудования. Для их удаления нефть, поступающая из сырьевых емкостей, смешивается с водой, в которой соли растворяются, и поступает на ЭЛОУ - электрообессоливащую установку (рис.2). Процесс обессоливания осуществляется в электродегидраторах - цилиндрических аппаратах со смонтированными внутри электродами. Под воздействием тока высокого напряжения (25 кВ и более), смесь воды и нефти (эмульсия) разрушается, вода собирается внизу аппарата и откачивается. Для более эффективного разрушения эмульсии, в сырьё вводятся специальные вещества - деэмульгаторы . Температура процесса - 100-120°С.

Первичная переработка нефти
Обессоленная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти, которая на российских НПЗ обозначается аббревиатурой АВТ - атмосферно-вакуумная трубчатка . Такое название обусловлено тем, что нагрев сырья перед разделением его на фракции, осуществляется в змеевиках трубчатых печей (рис.6) за счет тепла сжигания топлива и тепла дымовых газов.
АВТ разделена на два блока - атмосферной и вакуумной перегонки .

1. Атмосферная перегонка
Атмосферная перегонка (рис. 3,4) предназначена для отбора светлых нефтяных фракций - бензиновой, керосиновой и дизельных, выкипающих до 360°С, потенциальный выход которых составляет 45-60% на нефть. Остаток атмосферной перегонки - мазут.
Процесс заключается в разделении нагретой в печи нефти на отдельные фракции в ректификационной колонне - цилиндрическом вертикальном аппарате, внутри которого расположены контактные устройства (тарелки) , через которые пары движутся вверх, а жидкость - вниз. Ректификационные колонны различных размеров и конфигураций применяются практически на всех установках нефтеперерабатывающего производства, количество тарелок в них варьируется от 20 до 60. Предусматривается подвод тепла в нижнюю часть колонны и отвод тепла с верхней части колонны, в связи с чем температура в аппарате постепенно снижается от низа к верху. В результате сверху колонны отводится бензиновая фракция в виде паров, а пары керосиновой и дизельных фракций конденсируются в соответствующих частях колонны и выводятся, мазут остаётся жидким и откачивается с низа колонны.

2. Вакуумная перегонка
Вакуумная перегонка (рис.3,5,6) предназначена для отбора от мазута масляных дистиллятов на НПЗ топливно-масляного профиля, или широкой масляной фракции (вакуумного газойля) на НПЗ топливного профиля. Остатком вакуумной перегонки является гудрон.
Необходимость отбора масляных фракций под вакуумом обусловлена тем, что при температуре свыше 380°С начинается термическое разложение углеводородов (крекинг) , а конец кипения вакуумного газойля - 520°С и более. Поэтому перегонку ведут при остаточном давлении 40-60 мм рт. ст., что позволяет снизить максимальную температуру в аппарате до 360-380°С.
Разряжение в колонне создается при помощи соответствующего оборудования, ключевыми аппаратами являются паровые или жидкостные эжекторы (рис.7).

3. Стабилизация и вторичная перегонка бензина
Получаемая на атмосферном блоке бензиновая фракция содержит газы (в основном пропан и бутан) в объёме, превышающем требования по качеству, и не может использоваться ни в качестве компонента автобензина, ни в качестве товарного прямогонного бензина. Кроме того, процессы нефтепереработки, направленные на повышение октанового числа бензина и производства ароматических углеводородов в качестве сырья используют узкие бензиновые фракции. Этим обусловлено включение в технологическую схему переработки нефти данного процесса (рис.4), при котором от бензиновой фракции отгоняются сжиженные газы, и осуществляется её разгонка на 2-5 узких фракций на соответствующем количестве колонн.

Продукты первичной переработки нефти охлаждаются в теплообменниках , в которых отдают тепло поступающему на переработку холодному сырью, за счет чего осуществляется экономия технологического топлива, в водяных и воздушных холодильниках и выводятся с производства. Аналогичная схема теплообмена используется и на других установках НПЗ.

Современные установки первичной переработки зачастую являются комбинированными и могут включать в себя вышеперечисленные процессы в различной конфигурации. Мощность таких установок составляет от 3 до 6 млн. тонн по сырой нефти в год.
На заводах сооружается несколько установок первичной переработки во избежание полной остановки завода при выводе одной из установок в ремонт.

Продукты первичной переработки нефти

Наименование

Интервалы кипения
(состав)

Где отбирается

Где используется
(в порядке приоритета)

Рефлюкс стабилизации

Пропан, бутан, изобутан

Блок стабилизации

Газофракционирование, товарная продукция, технологическое топливо

Стабильный прямогонный бензин (нафта)

Вторичная перегонка бензина

Смешение бензина, товарная продукция

Стабильная легкая бензиновая

Блок стабилизации

Изомеризация, смешение бензина, товарная продукция

Бензольная

Вторичная перегонка бензина

Производство соответствующих ароматических углеводородов

Толуольная

Вторичная перегонка бензина

Ксилольная

Вторичная перегонка бензина

Сырьё каталитического риформинга

Вторичная перегонка бензина

Каталитический риформинг

Тяжелая бензиновая

Вторичная перегонка бензина

Смешение керосина, зимнего дизтоплива, каталитический риформинг

Компонент керосина

Атмосферная перегонка

Смешение керосина, дизельных топлив

Дизельная

Атмосферная перегонка

Гидроочистка, смешение дизтоплив, мазутов

Атмосферная перегонка (остаток)

Вакуумная перегонка, гидрокрекинг, смешение мазутов

Вакуумный газойль

Вакуумная перегонка

Каталитический крекинг, гидрокрекинг, товарная продукция, смешение мазутов.

Вакуумная перегонка (остаток)

Коксование, гидрокрекинг, смешение мазутов.

*) - н.к. - начало кипения
**) - к.к. - конец кипения

Фотографии установок первичной переработки различной конфигурации

Рис.5. Установка вакуумной перегонки мощностью 1,5 млн. тонн в год на Туркменбашинском НПЗ по проекту фирмы Uhde. Рис. 6. Установка вакуумной перегонки мощностью 1,6 млн. тонн в год на НПЗ "ЛУКОЙЛ-ПНОС". На переднем плане - трубчатая печь (жёлтого цвета). Рис.7. Вакуумсоздающая аппаратура фирмы Graham. Видны 3 эжектора, в которые поступают пары с верха колонны.

Сергей Пронин


По той причине, что в описании используются наименования различных углеводородов, следует привести их описание и зависимость товарного сырья от содержания этих углеводородов.

Парафины – вещества, не обладающие устойчивыми двойными связями между атомами углерода. Такие парафины, имеющие линейное и разветвленное строение, именуют насыщенными. Парафины подразделяют на следующие виды:

  • Нормальные. Обладают линейным строением, низким октановым числом и высокой температурой застывания. По этим причинам данные углеводороды при вторичной переработке подвергаются трансформации.
  • Изопарафины. Имеют разветвленное строение, неплохие антидетонационные показатели и довольно низкой температурой застывания.
  • Циклопарафины или нафтены обладают циклическим строением. Данные углеводороды положительным образом сказываются на качестве дизельного топлива и масел для смазки. Проведение риформинга продукта, содержащего нафтены в тяжелых фракциях бензина, располагает к высокому выходу и октановому числу.
  • Ароматические углеводороды состоят из бензольных колец. Данные кольца имеют атом водорода, который связан с шестью атомами углерода. Имеют довольно высокое октановое число, но негативно сказываются на экологической составляющей топлива. По этой причине для повышения октанового числа углеводороды подвергают превращению в ароматические методом каталитического риформинга.
  • Олефины могут обладать нормальным, разветвленным или циклическим строением. Нефтепродукты, получаемые после первичной переработки, данными углеводородами практически не обладают. Олефины оказывают негативное влияние на качество масел из-за химической агрессивности.

Процессы вторичной переработки нефтепродуктов:

Каталитический риформинг, каталитическая изомеризация и гидроочистка дистиллятов – технология, особенности процессов

1. Каталитический риформинг.

Данный процесс применяют в тех случаях, когда необходимо повысить октановое число за счет преобразований углеводородов. Значения октанового числа при этом могут составлять 92-100 позиций. Повышение данного значения осуществляется за счет увеличения доли ароматических углеводородов в смеси. Теоретические основы процесса были изложены в начале прошлого столетия Зелинским Н.Д.

При мощности установок от 300000 до 1000000 тонн/год объемная доля необходимого высококачественного сырья достигает 85-90 %. Сопутствующим компонентом риформинга является водород, который поступает на другие установки для дальнейшей переработки.

Самым лучшим сырьем является фракция бензина с температурой кипения от 85 до 180 0С. Перед риформингом нефтепродукт предварительно очищается от серы и азота, негативно сказывающихся на конечном результате.

Риформинг может происходить на установках двух видов: с периодической и постоянной регенерацией катализатора. В нашей стране на большинстве установок происходит периодическая регенерация. Относительно недавно в эксплуатацию введено несколько установок с постоянной регенерацией, которые значительно эффективнее. Однако, цена их также выше.

Рабочая температура в таких установках достигает значений в 500 – 530 0С, а давление – до 35 Атм. Для примера, в установках с непрерывной регенерацией давление составляет от двух до трех «атмосфер». Из-за того, что реакция риформинга поглощает значительное тепло, процесс протекает постепенно в трех-четырех отдельных камерах. Перед каждой секцией сырье предварительно подогревается. На выходе из последней камеры происходит отделение водорода, охлаждение готового продукта и вывод с установки.

На ряде нефтеперерабатывающих заводов данный технологический процесс применяется для получения ароматических углеводородов, которые являются сырьевой базой для многих продуктов химической промышленности.

2. Каталитическая изомеризация.

Данный процесс осуществляется также с целью повышения октанового числа. Сырьем для изомеризации являются легкие фракции бензина, температура которых колеблется в пределах от 62 до 85 0С. Повысить октановое число удается благодаря увеличению содержания изопарафинов. Весь процесс протекает в одной камере при температуре 160 – 380 0С и давлении до 35 Атм.

В практику ряда НПЗ вошло переоборудование устаревших установок риформинга в установки для изомеризации. Нередко также происходит объединение этих процессов под началом единого комплекса.

3. Гидроочистка дистиллятов.

Основной задачей данного процесса является устранение присутствия серы и азота в различных нефтепродуктах. Для этого применяют, как чистые дистиллянты, так и те, которые уже были использованы, то есть вторичные. Водород, который отделяется при риформинге, поступает также сюда.

Разрушение сернистых и азотосодержащих компонентов происходит после смешения сырья с газом, содержащим водород, нагрева до 280 – 340 0С и подачи смеси под давлением в 50 Атм. на катализаторы из никеля, кобальта или молибдена. На выходе получается небольшое количество низкооктанового бензина и дизельной фракции. Далее из смеси удаляется лишний водородосодержащий , и она поступает колонну ректификации. Результатом гидроочистки, например, может являться снижение содержания серы в дизельной фракции до 0,005 % при первоначальном значении в 1 %.

Гидрокрекинг и каталитический крекинг – технология, особенности процессов

4. Каталитический крекинг

Данный процесс вторичной переработки нефтепродуктов относится к числу самых значимых. От его осуществления зависит эффективность работы нефтеперерабатывающего завода. Суть процесса сводится к воздействию на нефтепродукт температурным режимом в присутствии катализатора. В результате этого, ряд углеводородов разлагается, а на выходной линии установки можно получить бензин с октановым числом более 90 позиций. Количество готовой продукции составляет 50-65 %. Каталитический крекинг включает в себя также изомеризацию. Этим объясняется высокое октановое число. Второстепенными продуктами переработки являются пропилен и бутилен, применяемые в нефтехимической промышленности, а также компоненты для производства дизельного топлива, сажи и мазута.

Средняя производительность большинства установок достигает 2,5 млн. тонн, но существуют системы, позволяющие производить и 4 млн. тонн продукции в год.

В основном блоке установки происходит нагревание сырья, крекинг и регенирация катализатора. В последнем случае происходит выжигание кокса, который выделяется после крекинга и осаждается на поверхностях. Циркуляция катализатора происходит по трубопроводам, которыми обвязаны все основные узлы установки.

В настоящее время можно сказать, что мощностей установок крекинга в России не хватает. Решение проблемы заключается не только в строительстве новых установок, но и реконструкции имеющихся систем нефтеперерабатывающих заводов.

Совсем недавно в нашей стране осуществили реконструкцию установок в Рязани и Ярославле, а в Нижнекамске введена в эксплуатацию новая установка крекинга. В нижнекамской установке применяется технология иностранных компаний.

Каталитический крекинг нередко включают в состав установок, позволяющих последовательно осуществлять гидроочистку сырья.

5. Гидрокрекинг

Назначение этого процесса связано с выработкой керосиновых и дизельных дистиллятов высочайшего качества. Достигается это за счет крекинга углеводородов нефтепродукта с одновременным присутствием водорода. Отличные показатели эксплуатации и влияния на экологию достигаются за счет качественной очистки сырья от серы, насыщения олефинов и ароматических углеводородов. Для примера можно отметить, что присутствие серы в конечном дизельном дистилляте после гидрокрекинга, составляет лишь миллионные доли процентов. Фракция бензина также характеризуется высоким показателем октанового числа, а тяжелая фракция может использоваться в качестве сырья для риформинга. Кроме того, гидрокрекинг применяется для получения моторных масел, которые по своим показателям близки к синтетическим продуктам.

Мощности установок гидрокрекинга, чаще всего, достигают значений в три-четыре млн. тонн в год.

Водорода, который поступает с установок риформинга, обычно недостаточно для осуществления гидрокрекинга. Для обеспечения потребностей в этом газе на заводах строят дополнительные установки. Водород на них производится благодаря паровой конверсии газов на основе углеводорода.

Технология процесса гидрокрекинга схожа с той, которая применяется на установках гидроочистки. Нефтепродукт, поступая в установку, смешивается с газом, содержащим водород. Далее он нагревается и поступает в реактор вместе с катализатором. Продукты, отделившиеся от газов, отправляются на ректификацию. Из-за того, что при гидрокрекинге происходит выделение тепла, водородосодержащий газ подается в охлажденном состоянии. Температура при этом регулируется объемом подаваемого газа. Из-за того, что контроль температуры значительно влияет на безопасность процесса, его осуществление относится к числу важнейших задач по недопущению вероятных аварий.

Установки гидрокрекинга, как любое другое сооружение, имеют различия, которые обусловлены различными конечными результатами и применяемым сырьем.

Давление до 80 Атм. и температура порядка 350 0 С в единственном реакторе позволяют получать вакуумный газойль с незначительным содержанием серы.

Для того, что получить максимум светлых фракций реакции проводят на двух реакторах. При таком процессе продукт из первого реактора отправляется на ректификацию. Там отделяются светлые фракции. Повторный гидрокрекинг проводится с остатками во втором реакторе. Гидрокрекинг вакуумного газойля осуществляют при давлении 180 Атм, мазута и гудрона – свыше 300. А температура при этом составляет, соответственно, 380 и 450 0 С.

Гидрокрекинг как таковой, в нашей стране появился относительно недавно. Такие установки в 2000-х годах появились в Перми, Уфе, Ярославле. На некоторых НПЗ проведена реконструкция имеющихся установок под установки гидрокрекинга.

Наличие современных установок гидрокрекинга позволяет проводить полноценную вторичную переработку с целью получения бензинов с высоким октановым числом и средних дистиллятов высокого качества.

Коксование и товарное производство – технология, особенности процессов

6. Коксование

Процесс коксования проводят с тяжелыми остатками нефти любой стадии переработки. Результатом этого является получение кокса, который используется в металлургии качестве сырья для изготовления электродов. Кроме того, из кокса получают определенное количество светлых фракций.

Основное отличие коксования от прочих процессов переработки второй стадии – отсутствие катализатора.

В России применяют установки коксования замедленного действия. Температура, при которой происходит этот процесс, достигает 500 0 С, а давление примерно равно атмосферному. Нефтепродукт, поступая по змеевикам в печи, подвергается термической обработке, и из него в соседних секциях выделяется кокс. На таких установках имеется четыре камеры с попеременным режимом работы. Процесс заполнения камеры коксом протекает в течение 24 часов. По истечении этого времени кокс выгружают и запускают следующий цикл работы установки.

Удаление кокса из камеры осуществляют при помощи гидравлического резака. Внешне он выглядит как бур, на конце которого имеются сопла. Через эти сопла струи воды под давлением 150 Атм. разбивают кокс. После этого происходит сортировка отбитых частиц кокса.

В верхней части камеры для коксования имеются каналы для отвода паров на установку по ректификации. Следует отметить, что светлые фракции, получаемые коксованием необходимо повторно перерабатывать, так как повышенное присутствие олефинов значительно снижает их качество.

Объемный выход светлых фракций достигает 35 %, а кокса (при коксовании гудрона) – 25 %.

7. Товарное производство

Вышеперечисленные процессы переработки позволяют получить составные компоненты различных видов топлив, которые обладают отличительными показателями эксплуатации и применения.

Для получения качественного продукта с конкретными показателями качества необходимо получить смесь данных компонентов. Этот процесс осуществляют также на нефтеперерабатывающих заводах.

Производственный комплекс любого направлен на осуществление смешения компонентов на основе конкретных математических моделей. Данный процесс зависит от различных факторов: планируемых остатков переработки нефтепродуктов, необходимых объемов поставок сырья и реализации готового нефтепродукта.

Нередко смешение происходит по привычным рецептурам, которые подвергаются корректировке при изменяющихся технологических процессах.

Процесс смешивания компонентов довольно прост: они подаются в определенную емкость в необходимом количестве. Сюда же могут быть добавлены определенные присадки. После перемешивания, товарный нефтепродукт подвергается контролю качества и перекачивается в резервуары для хранения и дальнейшей реализации.

Основные объемы готового нефтепродукта в нашей стране транспортируются по железным дорогам в . Налив нефтепродукта в цистерны осуществляется с помощью эстакад, расположенных на территории заводов. Определенная часть нефтепродуктов транспортируется также по , которые используют также для реализации топлива за границу. Менее распространенными видами транспорта являются речные и морские пути передвижения.

Добываемая из скважин продукция является смесью нефти, растворенного в ней газа (до 300 ). пластовой воды (от 4 до 90% масс.) с минеральными солями (до 10 г/л) в виде эмульсии и механических примесей (до 1% масс). От группы скважин сырая нефть поступает на несколько автоматизированных групповых замерных установок (АГЗУ), на которых замеряется дебит каждой скважины.

Затем сырая нефть по сборному коллектору поступает на ДНС, где происходит первая ступень сепарации, предварительное отделение воды и механических примесей. После отделения основного количества газа смесь поступает в сепараторы второй ступени С2, где отделяется большая часть воды и часть газа. Далее водонефтяная эмульсия направляется в электро-дегидраторы установки УПН. В УПН при в присутствии деэмульгаторов содержание воды уменьшается до 1% и менее, минеральных солей до 300 мг/л и менее и выделяется газ третьей ступени сепарации.

Стабильная нефть поступает на установку сдачи товарной нефти (УТН) и по магистральному нефтепроводу направляется на НПЗ. Вода с УПН и емкостей предварительного сброса воды передается на установку подготовки воды (УПВ). Очищенная вода используется для заводнения пласта в системе ППД. Газы, выделившиеся в сепараторах, поступают по трубопроводу на ГПЗ для разделения.

Первичная переработка нефти

Поступающую на нефгеперерабатывающий завод (НПЗ) нефть и получаемые из нее продукты проходят следующие стадии:

  • подготовка нефти к переработке (обезвоживание до 0,2% воды и обессоливание до 6 г солей на литр нефти):
  • первичная переработка нефти;
  • вторичная переработка нефти;
  • очистка нефтепродуктов.

Упрощенная схема, отражающая взаимосвязь названных четырех стадий, приведена на рис. 5.8

Переработка нефти начинается с ее первичной перегонки. Этот процесс является изобретением технологов-нефтяников и основан на свойстве несрти. определяемом графиком разгонки. Нефть - это сложная смесь большого количества взаимно растворимых углеводородов, имеющих различные температуры начала кипения. В упрощенном виде: чем длиннее молекула углеводорода, тем выше его точка кипения.

Сырьем для установок первичной перегонки служат нефть и газовый конденсат. Их разделяют на фракции для последующей переработки или использования как товарных продуктов. При первичной переработке нефти проводят ее атмосферную перегонку и вакуумную перегонку мазута. Эти процессы осуществляют на атмосферных трубчатых (AT) установках и вакуумных трубчатых (ВТ) установках.

Перегонка нефти на современных атмосферных установках осуществляется различными способами. В связи с увеличением масштабов переработки загазованных сернистых нефтей наиболее распространена перегонка нефти по схеме двукратного испарения в двух ректификационных колоннах ( рис. 5.9). Сырая нефть забирается насосом 1 и через теплообменник 2 подается в электродегидратор 3 для обезвоживания. Отстоявшаяся нагретая нефть проходит через теплообменник 4 и поступает в колонну 5, где с верха ее отбирается легкая фракция бензина. Далее полуотбензиненная нефть насосом 6 подается через трубчатую печь 7 в основную колонну 8, в которой отбираются все остальные требуемые фракции - светлые нефтепродукты и остаток - мазут. Часть нагретой в печи нефти возвращается в первую колонну (горячая струя).


Рис. 5.9.

Установки, работающие по схеме двукратного испарения, имеют мощность до 2 млн т/год.

На АТ-установках осуществляют неглубокую перегонку нефти с получением бензиновых, керосиновых, дизельных фракций и мазута. ВТ-установки предназначены для углубления переработки нефти. На этих установках из мазута получают газойлевые, масляные фракции и гудрон, которые используют в качестве сырья в процессах вторичной переработки нефти.

Процесс перегонки происходит в ректификационной колонне, представляющей собой вертикальный цилиндрический аппарат высотой до 30 м и диаметром до 4 м. Внутреннее пространство колонны разделено на отсеки большим количеством горизонтальных дисков (тарелок), в которых имеются отверстия для прохождения через них паров нефти ( рис. 5.10).


Рис. 5.10.

Перед закачкой в колонну нефть нагревают в трубчатой печи до температуры . При этом бензин, нафта (лигроин), керосин, легкий и тяжелый газойль переходят в парообразное состояние, а жидкая фаза с более высокой температурой кипения представляет собой мазут. После ввода горячей смеси в колонну мазут стекает вниз, а углеводороды в парообразном состоянии поднимаются вверх.

Смесь горячей жидкости и пара, поднимаясь по колонне и остывая, постепенно конденсируется. Вначале отделяются и опускаются на дно специальных тарелок тяжелые тугоплавкие фракции нефти, выше последовательно конденсируются и оседают на дно тарелок пары более легких фракций. Особенность процесса ректификации заключается в том, что горячие пары, поднимаясь, поочередно проходят через слои горячего конденсата. Количество тарелок в колонне должно быть таким, чтобы общий расход сливающихся с них готовых продуктов перегонки был равен расходу сырой нефти, подаваемой внутрь колонны. Несконденсировавшиеся пары углеводородов направляются на газофракционирование, где из них получают сухой газ, пропан, бутан и бензиновую фракцию.

При первичной перегонке нефти получают широкий ассортимент фракций и нефтепродуктов, различающихся по границам температур кипения, углеводородному и химическому составу, вязкости, температурам вспышки, застывания и другим свойствам.

В зависимости от технологии перегонки нефти пропан-бутановую фракцию получают в сжиженном или газообразном состоянии. Ее используют в качестве сырья на газофракционирующих установках с целью производства индивидуальных углеводородов, бытового топлива, компонента автомобильного бензина.

Фракцию именуют нефтепродуктом, если ее свойства отвечают нормам стандарта или техническим условиям на товарный продукт, не требующим дополнительного передела.

Бензиновая фракция с пределами выкипания преимущественно подвергается вторичной перегонке для получения узких фракций ( и др.). Эти фракции служат сырьем для процессов изомеризации, каталитического риформинга c целью получения индивидуальных ароматических углеводородов (бензола, толуола, ксилолов), высокооктановых компонентов автомобильных и авиационных бензинов, а также в качестве сырья для пиролиза при получении этилена.

Керосиновая фракция с температурами выкипания используется как топливо для реактивных двигателей; фракцию из малосернистых нефтей используют как осветительные керосины: фракцию - как растворитель для лакокрасочной промышленности.

Дизельная фракция с температурами выкипания используется в качестве дизельного топлива зимнего, фракция - в качестве летнего. Фракция из высокопарафинистой нефти используется как сырье для получения жидких парафинов.

Мазут применяется как котельное топливо или в качестве сырья установок вакуумной перегонки, а также термического, каталитического крекинга и гидрокрекинга.

Узкие масляные фракции с пределами выкипания ) используют как сырье для производства минеральных масел различного назначения и твердых парафинов.

Гудрон - остаток вакуумной перегонки мазута - подвергают деасфальтизации, коксованию, используют в производстве битума.

Вторичная переработка нефти

Полученные при перегонке с помощью физических процессов нефтепродукты отправляются на другие переделы, в которых используются различные химические реакции. Химические процессы, составляющие основу вторичной переработки, позволяют максимально использовать энергетический и химический потенциал углеводородов. Классификация методов вторичной переработки нефти приведена на рис. 5.11 .


Рис. 5.11.

Термический крекинг - это высокотемпературная переработка углеводородов нефти с целью получения высококачественного топлива. Различают несколько видов термического крекинга.

Неглубокий термический крекинг при температурах и давлении 1,5-2,0 МПа для получения котельного топлива из высоковязкого исходного сырья: мазута и гудрона.

Глубокий (жидкофазный) крекинг при температурах и давлении выше 5,0 МПа применяется для получения бензина с антидетонационными характеристиками из лигроиновых. керосиновых и газойлевых фракций. Крекинг-бензины содержат в своем составе значительное количество непредельных и ароматических углеводородов.

Побочными продуктами термического крекинга являются газ, крекинг-остаток, обогащенный высокомолекулярными углеводородами, и тяжелая смола.

Пиролиз используется для разложения углеводородов при и давлении 1,0-1,2 МПа. С его помощью получают газообразные непредельные углеводороды, в основном этилен и пропилен. Побочными продуктами пиролиза являются смолы пиролиза и предельные газы метан и этан.

Коксование - высокотемпературный ( и 0,2-0,6 МПа) процесс получения электродного или топливного кокса из нефтяных остатков. Это пек, полученный из смолы пиролиза, мазут, и гудрон.

Полностью использовать потенциал нефти удается с помощью катализаторов. Катализаторы характеризуются активностью, стабильностью и селективностью. Активность катализатора - это его производительность. Селективность определяется количеством целевого продукта, образовавшегося из исходного сырья.

Катализаторы термокаталитических процессов состоят из трех компонентов: носителя, основного компонента и добавок. В качестве носителя используются алюмосиликаты, основного компонента - цеолиты. В качестве добавок используются платина, рений, металлоорганические комплексы сурьмы, висмута, фосфора, оксиды кальция и магния. Среди катализаторов риформинга наибольшее значение приобрели платиновый и платино-рениевый катализатор.

Каталитический крекинг - это процесс разложения высокомолекулярных углеводородов при и давлении 0,13-0,15 МПа в присутствии катализаторов. Разработан процесс для производства высокооктанового бензина с октановым числом до 92 и сжиженных газов. В качестве катализаторов используются в основном алюмосиликаты и цеолиты.

Риформинг - это каталитический процесс переработки низкооктановых бензиновых фракций при температурах и давлении 2,0-4 МПа. Продуктом является высокооктановая компонента товарного автомобильного бензина с октановым числом до 100 и ароматические углеводороды (бензол, толуол, ксилолы). Сырьем являются бензиновые фракции, содержащие все типы углеводородов.

Гидрогенизационные процессы переработки нефтяных фракций проводятся в присутствии водорода и катализаторов при и давлении 2-32 МПа. Эти процессы увеличивают выход светлых нефтепродуктов и обеспечивают удаление примесей серы, кислорода и азота.

Фракции (дистилляты), получаемые в ходе первичной и вторичной переработки нефти, содержат в своем составе различные примеси. В светлых нефтепродуктах нежелательными примесями являются сернистые соединения, нафтеновые кислоты, непредельные соединения, смолы и твердые парафины.

Присутствие в моторных топливах серы и нафтеновых кислот вызывает коррозию деталей двигателей. Непредельные соединения в топливах образуют осадки, загрязняющие систему топливопроводов. Повышенное содержание смол в топливе приводит к нагарообразованию. Присутствие твердых углеводородов в нефтепродуктах повышает температуру их застывания и ухудшает подачу топлива в цилиндры. Присутствие ароматики в осветительных керосинах образует коптящее пламя.

Для удаления вредных примесей из светлых нефтепродуктов применяются различные способы очистки.

Типы нефтеперерабатывающих заводов

В 2001 г. в мире работало 742 нефтеперерабатывающих завода общей мощностью более 4 млрд т нефти в год. Средняя мощность одного завода составляет 5,5 млн т в год.

На большинстве российских заводов отсутствуют необходимые вторичные процессы: изомеризация, алкилирование, гидрокрекинг и современные разновидности каталитического крекинга. До 70% материалов, включая катализаторы и присадки к топливам и маслам, отечественная нефтеперерабатывающая отрасль импортирует. Задача ближайших лет заключается в том, чтобы поднять глубину переработки нефти с 55 до 90% и выше, обеспечив при этом содержание серы в бензине 0,001%.

Основные аппараты, в которых осуществляется превращение исходных реагентов в нефтепродукты, - это химические реакторы . Основные требования к реакторам следующие:

  • создание наилучшего контакта между реагентами, а также между реагентами и катализаторами;
  • обеспечение необходимого температурного режима;
  • механическая прочность и стойкость к воздействию реакционной среды, удобство обслуживания и ремонта.

Наибольший интерес представляют реакторы для систем газ-твердое тело. К ним относятся каталитический крекинг, риформинг, гидроочистка, каталитическая полимеризация олефинов, контактное коксование. Для осуществления этих процессов используются реакторы со стационарным, псевдоожиженным и движущимся слоями.

Наиболее простыми являются реакторы со стационарным слоем катализатора без теплообмена с внешней средой. Это полый или сферический аппарат с каталитической решеткой, на которую насыпан слой катализатора. Реагенты в виде газа поступают сверху, а продукты выводятся снизу.

Реакторы со стационарным слоем катализатора с теплообменом с внешней средой представляют собой многотрубчатые аппараты с размещением катализатора в трубках, а теплоносителя (хладоагента) в межтрубном пространстве. В зависимости от характера процесса применяют разнообразные теплоносители: воду, топочные газы, расплавы солей, органические теплоносители.

Химический реактор непосредственно связан с другими аппаратами: теплообменниками, конденсаторами, сепараторами, насосами, компрессорами и др. Такую систему называют реакционным узлом. Задача расчета реакционного узла сводится к выбору типа реактора и составлению материального и теплового баланса.

Ни один завод не может вырабатывать всю номенклатуру необходимых нефтепродуктов. Современные производства ориентируются на максимальную производительность, т. к. в этом случае они более экономичны. Одна из классификаций нефтеперерабатывающих заводов (НПЗ) включает пять типов:

  • топливный с неглубокой переработкой нефти;
  • топливный с глубокой переработкой нефти;
  • топливно-нефтехимический с глубокой переработкой нефти и производством нефтехимической продукции;
  • топливно-масляный;
  • энергонефтехимический.

На заводах первых двух типов вырабатывают различные виды топлива. При неглубокой переработке из нефти получают до 35% светлых нефтепродуктов. При глубокой переработке соотношение обратное. Это достигается применением вторичных методов переработки: каталитического крекинга; гидрокрекинга; коксования и др.

На заводах третьего типа помимо топлив вырабатываются нефтехимические продукты. В качестве сырья используют либо газы, либо бензиновые и керосино-дизельные фракции первичной переработки нефти.

На заводах топливно-масляного типа наряду с топливами вырабатывают широкий ассортимент масел, парафины, битум и др.

Заводы энергонефтехимического типа строят возле ТЭЦ большой мощности. На таких заводах получают фракции светлых нефтепродуктов для нефтехимического производства, а образующийся мазут направляют на ТЭЦ в качестве топлива.

В словаре нефтепереработчиков существуют также другие термины: простая, сложная и очень сложная нереработка . В основу этой классификации положен объем капиталовложений, необходимый для строительства крупных единиц оборудования.

Нефтеперерабатывающий завод, работающий по простой схеме, включает перегонку сырой нефти, гидроочистку дистиллятов и каталитический риформинг нафты. НПЗ, работающий по сложной схеме, кроме вышеперечисленного, включает каталитическую крекинг-установку и установки алкилирования. НПЗ, работающий по очень сложной схеме, включает то же самое, что при сложной схеме, плюс установки по производству олефинов.

  • нефтяное топливо - 27;
  • реактивное топливо - 10;
  • нефтяной кокс - 5;
  • сжиженные газы - 4:
  • сырье для нефтехимии - 3:
  • битум - 3;
  • смазочные материалы - 1;
  • керосин - 1.
  • При переработке любой нефти по сложной схеме получается больший объем светлых нефтепродуктов, чем при переработке по простой схеме. Порядок цифр такой: при простой схеме переработки объемный выход светлых нефтепродуктов (бензин плюс реактивное топливо) составляет около 40%: при сложной схеме - около 70%; при очень сложной - до 90%.

    Переработка газов и газофракционирующие установки

    Природные горючие газы перерабатывают на газоперерабатывающих заводах (ГПЗ), которые строят вблизи крупных нефтяных и газовых месторождений. Эти газы состоят из смеси предельных парафиновых углеводородов, в которые могут входить азот, углекислый газ, сероводород, гелий и пары воды. Сырьем для ГПЗ также являются газы, получаемые при первичной и вторичной переработке нефти, которые в отличие от природных газов содержат еще и непредельные углеводороды - олефины.

    На ГПЗ с полным (законченным) технологическим циклом осуществляют пять основных процессов:

    • прием, замер, очистка и осушка газа;
    • компримирование газа до давления, необходимого для переработки;
    • отбензинивание газа - извлечение нестабильного газового бензина;
    • разделение нестабильного бензина на газовый бензин и индивидуальные технически чистые углеводороды (пропан, бутаны, пентаны, н-гексан);
    • хранение и отгрузка жидкой продукции завода.

    В случае, когда количество исходного сырья невелико, газоперерабатывающее производство может быть организовано как газоотбензинивающая установка в составе нефтегазодобывающего управления (НГДУ) или в составе НПЗ. Принципиальная технологическая схема ГПЗ приведена на рис. 5.12 .


    Рис. 5.12.

    Газ поступает в пункт приема под давлением 0,15-0,35 МПа. Здесь производят замер его количества и направляют в приемные сепараторы, где отделяют от газа механические примеси и капелыгую влагу. Здесь же газ проходит через установку его очистки 2 от сероводорода и углекислого газа.

    Компрессорная станция первой ступени 3 предназначена для перекачки сырьевого газа. Сжатие осуществляется в одну, две или три ступени газомоторными компрессорами типа 10 ГКН или центробежными нагнетателями типа К-980.

    На отбензинивающих установках 4 сырьевой газ разделяют на нестабильный газовый бензин, отбензиненный газ и сбросной газ. Отбензиненный газ компрессорной станцией второй ступени 5 закачивается в магистральный газопровод. Нестабильный бензин направляется на газофракционирующие установки 6.

    Газофракционирующие установки предназначены для разделения нестабильного бензина на стабильный бензин и индивидуальные технически чистые углеводороды: этан, пропан, бутан, пентан и н-гексан. Продукты разделения газов откачивают в товарный парк 7, откуда производится их отгрузка потребителям.

    Отбензинивание газов осуществляется различными методами: компрессионным; абсорбционным; адсорбционным; конденсационным.

    ГФУ эксплуатируются в составе нефте- и газоперерабатывающих заводов, на нефтехимических предприятиях и самостоятельно как сырьевые блоки для получения мономеров в промышленности синтетического каучука.

    Процесс разделения нестабильного бензина на стабильный газовый бензин и технически чистые индивидуальные углеводороды называется фракционированием. В основе фракционирования лежит метод ректификации. Газофракционирующие установки бывают одноколонными и многоколонными. На одноколонных установках выделяют стабильный бензин и сжиженный газ. на многоколонных - стабильный бензин и фракции индивидуальных углеводородов.