Мой бизнес - Франшизы. Рейтинги. Истории успеха. Идеи. Работа и образование
Поиск по сайту

Режимы термической обработки латуни л60. Термическая обработка металлов

Под термической обработкой цветного металла понимается нагрев до определенной температуры, после чего следует охлаждение с определенной скоростью. Общая эффективность термической обработки цветного металла зависит от его предшествующей обработки, от температуры и скорости нагрева, продолжительности выдержки при этой температуре и скорости охлаждения

Процессы термической обработки цветных металлов можно разделить на две основные группы: термическая обработка, целью которой является получение структуры, максимально приближающейся к равновесному состоянию, и термическая обработка, целью которой, наоборот, является достижение неравновесного состояния. В некоторых случаях обе упомянутые группы процессов взаимно перекрываются

К первой группе относятся рекристаллизационный отжиг деформированного материала, далее отжиг для снятия внутренних напряжений и, наконец, гомогенизационный отжиг отливок. Ко второй группе, которая считается иногда термической обработкой в узком смысле слова, относится термическая обработка с получением неравновесного состояния, т. е. так называемое дисперсионное отверждение

Мягкий или рекристаллизационный отжиг

Мягкий отжиг это термическая обработка заготовок, подвергшихся холодной обработке давлением. Он производится путем нагрева изделия до определенной температуры, выдержки при этой температуре в течение определенного времени и, как правило, медленного последующего охлаждения. Уровень температуры, продолжительность выдержки так же, как и скорости нагрева и охлаждения, зависят как от способа предшествующей обработки, так и от требуемых свойств изделия. Следовательно, процесс этого отжига характеризуется степенью предшествующего обжатия, температурой и продолжительностью отжига и требуемой структурой изделия. Кратко можно пояснить сказанное следующими примерами

Металл, получивший наклеп в результате обработки давлением , претерпевает во время нагрева несколько взаимно перекрывающихся изменений. Сначала происходит так называемое «восстановление», характеризующееся снятием внутренних напряжений, т. е. устранением нарушений кристаллической решетки, вызванных в материале обработкой давлением. В этой области механические свойства изменяются очень мало, хотя на некоторых физических свойствах уже наблюдаются изменения. При дальнейшем нагреве начинают образовываться зародыши новообразующей структуры, и происходит рост этих зародышей. В совокупности эти два процесса называют рекристаллизацией . Механические и физические свойства, приобретенные материалом в результате обработки давлением, утрачиваются им при рекристаллизации, и материал приобретает свойства, которые он имел перед наклепом. Затем следует стадия роста зерна, при которой кристаллы сливаются; при этом некоторые кристаллы растут за счет соседних кристаллов, и кристаллическая структура укрупняется

Процесс изменения механических свойств меди, не содержащей кислорода при наклепе и рекристаллизационном отжиге поясняется на нижележащих графиках

Зависимость механических свойств при наклепе от степени обжатия

Зависимость механических свойств при рекристаллизационном отжиге от температуры

Кривые твердости в зависимости от предшествующей степени обжатия и температуры, а также рост зерна в зависимости от температуры после рекристаллизации

Отжиг для снятия внутренних напряжений

Такой отжиг называется стабилизацией , а применительно к деформированным заготовкам - отпуском . Отжиг состоит в нагреве до невысокой температуры и кратковременной выдержке при этой температуре до полного прогрева изделия, после чего следует медленное охлаждение. Для заготовок, обработанных давлением, это - температура из области восстановления, т. е. ниже температуры рекристаллизации. Этим отжигом устраняются внутренние напряжения, вызванные, например, в отливках неравномерным остыванием и термической обработкой, а в поковках - обработкой давлением на холоде, термической обработкой или обработкой резанием при больших сечениях стружки. Прежняя кристаллизация при этом нагреве сохраняется. Механические свойства также существенно не изменяются, в том числе и после длительного хранения

У изделий, особенно сложной конфигурации, этим процессом обеспечивается стабильность размеров. Пример температур отпуска некоторых деформируемых сплавов алюминия и меди приведен в табл.1

Температуры отпуска для снятия внутренних напряжений в некоторых деформируемых металлах и сплавах

Гомогенизационный отжиг

Гомогенизационный отжиг - это термическая обработка, состоящая из нагрева до высокой температуры и выдержки при этой температуре в течение определенного времени, пока не будут достигнуты равномерный состав и равномерная структура. Затем следует, как правило, медленное охлаждение. В литых сплавах встречается неравномерность (гетерогенность) двоякого рода. Это - ликвация примесей , накапливающихся в тех частях отливки, которые отвердевают последними, и расслоение (слоистость) каждого отдельного кристалла твердого раствора. Неравномерности внутри кристалла легко выравниваются диффузией , если она протекает при достаточно высокой температуре и достаточно долго. Напротив, примеси, накопленные в отдельных местах отливки, рассеиваются отжигом значительно хуже. Они способны к диффузии лишь в том случае, если растворяются в основном металле при высоких температурах. Но и в этом случае процесс гомогенизации затруднен ввиду большого пути, который должны проходить отдельные частицы

Гомогенизационному отжигу можно подвергать и деформированные металлы, если требуется улучшить некоторые их механические свойства, особенно вязкость и химическую стойкость сплава. Путем нагрева до высокой температуры определенные легирующие элементы переводятся в твердый раствор до тех пор, пока сплав не станет гомогенным, а затем быстрым охлаждением подавляется ликвация. Однако этот процесс уже переходит в область термической обработки для получения неравновесных состояний

Дисперсионное отверждение

Для дисперсионного отверждения сплава обязательным условием является то, чтобы в основных кристаллах находилась частично растворимая фаза, растворимость которой уменьшается с понижением температуры. При медленном охлаждении происходит ликвация, в результате которой может выделиться, в зависимости от формы диаграммы, чистый металл, твердый раствор соединений или какая — либо другая фаза. Быстрым охлаждением из области твердого раствора можно во многих случаях подавить ликвацию, и закаленный таким образом сплав привести в неравновесное состояние пересыщенного твердого раствора. При дальнейшем умеренном нагреве или нормальной температуре сплав проявляет тенденцию прийти в стабильное состояние. Этот сложный процесс пока еще не вполне выяснен, хотя практически в технике уже применяют целый ряд отверждаемых сплавов. Процесс протекает по-разному у разных отверждаемых сплавов, а во многих случаях - неодинаково даже у одного и того же сплава. Поэтому ограничимся лишь краткой характеристикой этого процесса

Отверждение состоит в основном из трех этапов. Сначала сплав нагревается до соответствующей температуры. Эта температура находится в пределах между линией солидуса и линией растворимости в твердом состоянии по возможности ближе к температуре солидуса. Лучше всего эту температуру, учитывая ее узкий диапазон, особенно у алюминиевых сплавов (490-535° С), поддерживать в соляном растворе, и поэтому именно такие растворы и применяют чаще всего. Целью отжига этого вида является получение богатого твердого раствора. Выдержка при данной температуре зависит от типа сплава и вида заготовки. Затем следует быстрое охлаждение (закалка в масле или в воде). Сплав проходит через разные стадии, приближающиеся к равновесному состоянию, причем атомы пересыщенного твердого раствора каждый раз располагаются по-разному. Этот процесс проводится при нормальной или повышенной температуре; иногда его называют старением. В некоторых случаях между закалкой и старением производят холодную обработку давлением. Старение при нормальной температуре называется естественным , а при повышенной температуре - искусственным

При отверждении изменяются механические свойства. После закалки прочность несколько уменьшается с увеличением вязкости, а при старении прочность снова повышается, а вязкость и пластичность немного уменьшаются. Эти изменения при старении подчиняются определенным закономерностям, зависящим от температуры, продолжительности старения и вида сплава. По достижении максимума прочность сплава при дальнейшем нагревании его снова уменьшается. В результате такого «перестарения » сплав переходит из нестабильного отвержденного состояния в равновесное, и материал приобретает прежние механические свойства. Разумеется, прочность в отвержденном состоянии всегда больше той, которая может быть получена у того же сплава нагартовкой, и вообще отверждаемые сплавы обладают наибольшей прочностью по сравнению с прочими металлами этой группы. В процессе отверждения изменяются и некоторые физические свойства

На рис.5 показано влияние температуры и продолжительности искусственного старения на механические свойства деформируемого сплава AlMgSi.

Общая схема зависимости температуры и продолжительности отжига при различных способах термической обработки деформируемого сплава AlMgSi приведена на рис.6

У некоторых сплавов цветных металлов при термической обработке на неравновесное состояние процессы перекристаллизации протекают так же, как у стали. Например, в некоторых алюминиевых бронзах происходят так называемые фазовые превращения γ — α , в связи с чем весь процесс, состоящий из закалки и отпуска, можно назвать термическим улучшением . Изменения механических свойств при улучшении отличаются от тех, которые сопровождают отверждение: после закалки прочность увеличивается с одновременным уменьшением вязкости, а при отпуске прочность снова уменьшается, тогда как вязкость немного повышается

Значения механических свойств деформируемых сплавов алюминия, подвергавшихся различной термической обработке

Марка сплава Полуфабрикат σ т, (кг/мм 2) σ вр, (кг/мм 2) δ 10 , (%)
Al 99,5 Лист 1,5 7 — 10 22
Al-Cu4-Mg1 Лист 18 — 24 11
Al-Zn6-Mg-Cu Пруток 18 — 28 9
Al-Mg-Si Лист 11 — 15 16
Al-Mg Лист 18 — 23 16
Al-Mg5 Пруток 25 — 28 16
Al-Mg-Mn Лист 17 — 26 15
Al-Mn Труба 11 — 17 16

В твердом состоянии

Марка сплава Полуфабрикат σ т, (кг/мм 2) σ вр, (кг/мм 2) δ 10 , (%)
Al 99,5 Лист 11 13 4
Al-Mg-Si Лист 15 17 4
Al-Mg Лист 27 3
Al-Mg5 Пруток 28 32 3
Al-Mg-Mn Лист 20 24 3
Al-Mn Труба 19 3

В отвержденном состоянии

Марка сплава Полуфабрикат σ т, (кг/мм 2) σ вр, (кг/мм 2) δ 10 , (%) Примечания
Al-Cu4-Mg1 Лист 28 43,5 10 Отвержденные при нормальной температуре; все размеры
Al-Cu-Ni-Mg-Fe Поковка 26 38 4 Небольшие поковки и в направлении волокон
Al-Zn6-Mg-Cu Пруток 38 50 6 Отвержденные при высокой температуре
Al-Mg-Si Лист 10 20 12

Режимы термической обработки и значения механических свойств литейных сплавов алюминия

Марка сплава Отливка Способ термической обработки отливки Темпе- ратура закалки (°С) Продолжи- тельность выдержки при этой темпе- ратуре (часы) Темпе- ратура старения (°С) Про- должи- тель- ность старения (часы) σ т, (кг/мм 2) σ вр, (кг/мм 2) δ 5 , (%) HB
Al-Si-Cu5 В песок 180±5 15 16 65
Al-Si-Cu5 В песок Отвержденная в горячем виде 525±5 4 180±5 5 20 70
Al-Si-Cu5 В песок 525 +5 -10 4 230±5 5 18 1 65
Al-Si-Cu5 В кокиль Подвергнутая искусственному старению 180±5 15 16 65
Al-Cu-Si5 В кокиль Закаленная и стабили- зированная 525 +5 -10 4 230±5 5 18 1 65
Al-Cu-Ni-Mg В песок Отвержденная в горячем виде 515±5 4 — 10 235±5 4 — 6 18 22 0,3 90
Al-Cu-Ni-Mg В кокиль Отвержденная в горячем виде 515±5 4 — 10 235±5 4 — 6 20 24 0,3 90
Al-Mg11 В песок Закаленная 435±5 15 — 20 28 9 60
Al-Si13 В песок Термически необработанная 8 17 4 50
Al-Si13 В кокиль Отожженная 9 20 3 55

Примечание: значения механических свойств являются минимальными и относятся к специально отлитым испытательным пруткам

Режимы термической обработки деформируемых сплавов алюминия

Горячее деформирование

Марка сплава Оптимальная температура (°С)
Al 99,5 380 — 500 1 — 2
Al-Cu4-Mg1 400 — 450 4 — 8
Al-Cu-Ni-Mg-Fe 420 — 470 4 — 8
Al-Zn6-Mg-Cu 440 — 460 4 — 8
Al-Mg-Si 480 — 520 2 — 4
Al-Mg 400 — 450 2 — 4
Al-Mg5 330 — 400 3 — 6
Al-Mg-Mn 400 — 450 2 — 4
Al-Mn 450 — 500 1 — 2

Полный отжиг

Марка сплава Температура (°С) Продолжительность выдержки при этой температуре (часы) Способ охлаждения
Al 99,5 360 — 400 2 — 6 На воздухе
Al-Cu4-Mg1 330 — 420 1 — 6
Al-Cu-Ni-Mg-Fe 340 — 400 1 — 6 Медленное в печи; быстрое охлаждение 40 — 60 град/ч до температуры 200°С
Al-Zn6-Mg-Cu 420 — 440 2 Медленное в печи; быстрое охлаждение 30 — 50 град/ч
Al-Mg-Si 360 — 400 4 — 8 Медленное в печи; быстрое охлаждение 60 — 100 град/ч до температуры 200°С
Al-Mg 360 — 400 2 — 4 На воздухе
Al-Mg5 360 — 400 2 — 4 Медленное в печи
Al-Mg-Mn 360 — 400 1/2 — 3 На воздухе
Al-Mn 500 — 550 (быстрый нагрев) 1 — 4 На воздухе

Отверждение

Марка сплава Температура закалки (°С) Продолжительность выдержки при этой температуре (часы) Температура старения (°С) Продолжительность старения (часы)
Al-Cu4-Mg1 490 — 505 1/4 — 1, ванна При нормальной температуре 5 дней
Al-Cu-Ni-Mg-Fe 520 — 540 1/2 — 1, ванна 180 — 195 12 — 14 ч
Al-Zn6-Mg-Cu 465 — 475 5 — 15 мин, ванна; 10 — 30 мин, воздушная печь 130 — 140 16 ч
Al-Mg-Si 520 — 535 1/3 — 1, ванна 155 — 160 4 — 6 ч

Значения механических свойств деформируемых сплавов меди, подвергнутых различной термической обработке

В состоянии мягком или после горячего деформирования

Марка сплава Полуфабрикат σ т, (кг/мм 2) σ вр, (кг/мм 2) δ 10 , (%)
Cu 99,5 Лист 20 30
Cu-Sn 6 Пруток 15 35 40
Ms (латунь) 90 Лист 8 25 40
Ms (латунь) 70 Лист 13 28 47
Ms (латунь) 63 Фасонный профиль 12 31 40
Cu-Ni 2-Si Пруток 10 25 30
Cu-Al 10-Fe-Ni Пруток 40 65 5
Cu-Be (2,0%)-Co (0,3%) Лист и пруток 17 — 25 42 — 52 35 — 50

В твердом состоянии

Марка сплава Полуфабрикат σ т, (кг/мм 2) σ вр, (кг/мм 2) δ 10 , (%)
Cu 99,5 Лист 16 30 4
Cu-Sn 6 Пруток 45 50 8
Ms (латунь) 90 Лист 20 35 8
Ms (латунь) 70 Лист 30 45 15
Ms (латунь) 63 Фасонный профиль 35 42 15
Cu-Be (2,0%)-Co (0,3%) Лист и пруток 52 — 60 63 — 70 10 — 20

ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕДИ И ЛАТУНИ

Медь.

Медь применяют для производства листов, ленты, проволоки методом холодной деформации. В процессе деформации она теря-ет пластичность и приобретает упругость. Потеря пластичности затрудняет прокалку, протяжку и волочение, а в некоторых слу-чаях делает невозможной дальнейшую обработку металла.

Для снятия иагартовки или наклепа и восстановления пласти-ческих свойств меди проводят рекристаллизационный отжиг по режиму: нагрев до температуры 450—500° С со скоростью 200—220° С/ч, выдержка в зависимости от конфигурации и массы изделия от 0,5 до 1,5 ч, охлаждение на спокойном воздухе. Струк-тура металла после отжига состоит из равноосных кристаллов, прочность σв=190 МПа, относительное удлинение δ = 22%.

Латунь .

Сплав меди с цинком называют латунью. Различают двухкомпонентные (простые) латуни, состоящие только из меди, цинка и некоторых примесей, и многокомпонентные (специальные) латуни, в которые вводят еще один или несколько легирующих элементов (свинец, кремний, олово) для придания сплаву тех или иных свойств.

Двухкомпонентныелатуни в зависимости от способа обработки подразделяют на деформируемые и литейные.

деформируемые двухкомпонентные латуни (Л96, Л90, Л80, Л63 и др.) обладают высокой пластичностью и хорошо обрабаты-ваются давлением, их используют для изготовления листов, лен-ты, полос, труб, проволоки и прутков разного профиля.

Литейные латуни применяют для отливки фасонных деталей. В процессе холодной обработки давлением двухкомпонентные ла-туни, как и медь, получают наклеп, вследствие которого возраста-ет прочность и падает пластичность. Поэтому такие латуни под-вергают термической обработке — рекристаллизационному отжигу по режиму: нагрев до 450—650° С, со скоростью 180—200° С/ч, выдержка 1,5—2,0 ч и охлаждение на спокойном воздухе. Проч-ность латуни после отжига σ Β = 240-320 МПа, относительное уд-линение δ = 49-52%·

Латунные изделия с большим внутренним напряжением в ме-талле подвержены растрескиванию. При длительном хранении на воздухе на них образуются продольные и поперечные трещины. Чтобы избежать этого, изделия перед длительным хранением под-вергают низкотемпературному отжигу при 250—300° С.

Наличие в многокомпонентных (специальных) ла тунях легирующих элементов (марганца, олова, никеля, свин-ца и кремния) придает им повышенную прочность, твердость и высокую коррозионную стойкость в атмосферных условиях и мор-ской воде. Наиболее высокой устойчивостью в морской воде обла-дают латуни, легированные оловом, например ЛО70-1, ЛА77-2 и ЛАН59-3-2, получившие название морской латуни, их применяют в основном для изготовления деталей морских судов.

По способу обработки специальные латуни подразделяют на деформируемые и литейные. Деформируемые латуни используют для получения полуфабрикатов (листов, труб, ленты), пружин, деталей часов и приборов. Литейные многокомпонентные латуни применяют для изготовления полуфабрикатов и фасонных деталей методом литья (гребные винты, лопасти, детали арматуры и т.п.). Требуемые механические свойства специальной латуни обеспечи-вают термической обработкой их, режимы которой приведены в таблице. Для получения мелкого зерна перед глубокой вытяжкой деформируемые латуни для листов, лент, полос подвергают от-жигу при температуре 450—500° С.

Режимы термической обработки специальных латуней *

Марка сплава

Назначение обработки

Вид обработки

Темпера ту-ра нагрева, °С

Выдерж-ка, ч

Деформируемые латуни

Снятие наклепа

Рекристаллизацион-

ный отжиг

Снятие напряжений

Низкий отжиг

Литейные латуни

Снятие напряжений

Рекристаллизацион-

лый отжиг

* Охлаждающая среда — воздух.

ТЕРМИЧЕСКОЕ УПРОЧНЕНИЕ БРОНЗЫ

Бронза — сплав меди с оловом, свинцом, кремнием, алюмини-ем, бериллием и другими элементами. По основному легирующему элементу бронзы разделяют на оловянные и безоловянные (спе-циальные), по механическим свойствам — на деформируемые и литейные.

Деформируемые оловянные бронзы марок Бр.ОФ8-0,3, Бр.ОЦ4-3, Бр.ОЦС4-4-2,5 выпускают в виде прутков, лент, проволоки для пружин. Структура этих бронз состоит из α-твердого раствора. Основным видом термической обработки бронз является высокий отжиг по режиму: нагрев до 600—650° С, выдержка при этой температуре в течение 1—2 ч и быстрое охлаж-дение. Прочность после отжига σ в — 350-450 МПа, относительное удлинение б= 18—22%, твердость НВ 70—90.

Литейные оловянные бронзы марок Бр.ОЦ5-5-5, Бр.ОСНЗ-7-5-1, Бр.ОЦСЗ,5-7-5 используют для изготовления анти-фрикционных деталей (втулок, подшипников, вкладышей и др.). Литейные оловянные бронзы подвергают отжигу при 540—550° С в течение 60—90 мин.

Безоловянные бронзы Бр.5, Бр.7, Бр.АМц9-2, Бр.КН1-3 идругие марки имеют высокую прочность, хорошие антикоррози-онные и антифрикционные свойства. Из этих бронз изготовляют шестерни, втулки, мембраны и другие детали. Для облегчения обработки давлением бронзы подвергают гомогенизации при 700—750° С с последующим быстрым охлаждением. Отливки, име-ющие внутренние напряжения, отжигают при 550° С с выдержкой 90—120 мин.

Наиболее часто в промышленности применяют двойные -алюминиевые бронзы марок Бр.А5, Бр.А7 и бронзы, до-бавочно легированные никелем, марганцем, железом и другими элементами, например Бр.АЖН10-4-4. Эти бронзы используют для различных втулок, фланцев, направляющих седел, шестерен и других небольших деталей, испытывающих большие нагрузки.

Двойные алюминиевые бронзы подвергают закалке и отпуску по режиму: нагрев под закалку до 880—900° С со скоростью 180—200° С/ч, выдержка при этой температуре 1,5—2 ч, охлажде-ние в воде; отпуск при 400—450° С в течение 90—120 мин. Струк-тура сплава после закалки состоит из мартенсита, после отпус-ка—из тонкой механической смеси; прочность бронзы σ в = 550МПа, δ = 5%, твердость НВ 380—400.

Бериллиевая бронза Бр.Б2 — сплав меди с бериллием. Уникальные свойства — высокая прочность и упругость при одно-временной химической стойкости, немагнитность и способность к термическому упрочнению — все это делает бериллиевую бронзу незаменимым материалом для изготовления пружин часов и при-боров, мембран, пружинистых контактов и других деталей. Высо-кая твердость и немагнитность позволяют использовать бронзу в качестве ударного инструмента (молотки, зубила), не образующе-го искр при ударе о камень и металл. Такой инструмент применя-ют при работах во взрывоопасных средах. Бронзу Бр.Б2 закали-вают при 800—820° С с охлаждением в воде, а затем подвергают искусственному старению при 300—350° С. При этом прочность сплава σ Β =1300 МПа, твердость HRC37—40.

ТЕРМИЧЕСКОЕ УПРОЧНЕНИЕ АЛЮМИНИЕВЫХ СПЛАВОВ

Деформируемые алюминиевые сплавы разделяют на неупрочняемые термической обработкой и упрочняемые. Кнеупрочняемым алюминиевым сплавам относят сплавы марки АМц2, АМг2, АМгЗ, имеющие невысокую прочность и высокую пластич-ность; их применяют для изделий, получаемых глубокой вытяж-кой, упрочняют холодной обработкой давлением (нагартовкой).

Наиболее распространены сплавы, упрочняемые термической обработкой. К ним относят дюралюминий марок Д1, Д16, Д3П, в состав которых входят алюминий, медь, магний и марганец. Ос-новными видами термического упрочнения дюралюминия являют-ся закалка и старение. Закалку проводят при 505—515° С с после-дующим охлаждением в холодной воде. Старение применяют как естественное, так и искусственное. При естественном старении сплав выдерживают в течение 4—5 сут, при искусственном — 0,8—2,0 ч; температура старения — не ниже 100—150°С; проч-ность после обработки σ Β = 490 МПа, 6=14%. Сплавы Д1 и Д16 применяют для изготовления деталей и элементов строительных конструкций, а также изделий для летательных аппаратов.

Авиаль (АВ, АВТ, АВТ1)—это деформируемый сплав, обла-дающий более высокой пластичностью, свариваемостью и корро-зионной стойкостью, чем дюралюминиевые; подвергают закалке в воде при 515—525° С и старению: сплавы АВ и АВТ — естествен-ному, сплав АВТ1 — искусственному при 160° С с выдержкой 12—18 ч. Применяют авиаль для производства листов, труб, ло-пастей винтов вертолетов и т. п.

Высокопрочные (σ в =550-700 МПа) алюминиевые сплавы В95 и В96 имеют меньшую пластичность, чем дюралюминий. Термиче-ская обработка этих сплавов заключается в закалке при 465—475° С с охлаждением в холодной или горячей воде и искус-ственном старении при 135—145° С в течение 14—16 ч. Применяют сплавы в самолетостроении для нагруженных конструкций, работающих длительное время при 100—200° С.

Ковочные алюминиевые сплавы марок АК1, АК6, АК8 подвер-гают закалке при 500—575° С с охлаждением в проточной воде и искусственному старению при 150—165° С с выдержкой 6—15 ч; прочность сплава σ Β = 380-460 МПа, относительное удлинение δ = 7-10%.

Литейные алюминиевые сплавы называют силуми-нами. Наиболее распространены термически упрочняемые сплавы марок АЛ4, АЛ6 и АЛ20 Отливки из сплавов АЛ4 и АЛ6 зака-ливают при 535—545° С с охлаждением в горячей (60—80° С) воде и подвергают искусственному старению при 175° С в течение 2—3 ч; после термической обработки σ в =260 МПа, δ = 4-6%, твердость НВ 75—80. Для снятия внутренних напряжений отливки из этих сплавов отжигают при 300° С в течение 5—Ю ч с охлаж-дением на воздухе. Жаропрочные сплавы марок АЛ 11 и АЛ20, идущие для изготовления поршней, головок цилиндров, топок кот-лов, работающих при 200—300° С, подвергают закалке (нагрев до 535—545° С, выдержка при этой температуре в течение 3—6 ч и охлаждение в проточной воде), а также стабилизирующему отпус-ку при 175—180° С в течение 5—10 ч; после термической обработ-ки σ в =300-350 МПа, δ=3-5%.

ТЕРМИЧЕСКАЯ ОБРАБОТКА МАГНИЕВЫХ И ТИТАНОВЫХ СПЛАВОВ

Магниевые сплавы.

Основными элементами в магниевых спла-вах (кроме магния) являются алюминий, цинк, марганец и цир-коний. Магниевые сплавы делят на деформируемые и литейные.

Деформируемые магниевые сплавы марок МА1, МА8, МА14 подвергают термическому упрочнению по режиму: на-грев под закалку до 410—415° С, выдержка 15—18 ч, охлаждение на воздухе и искусственное старение при 175° С в течение 15—16 ч; после термообработки σ Β = 320~430 МПа, δ = 6-14%. Сплавы МА2, МАЗ и МА5 термической обработке не подвергают; их при-меняют для изготовления листов, плит, профилей и поковок.

Химический состав литейных магниевых сплавов (МЛ4, МЛ5, МЛ12 и др.) близок к составу деформируемых, но пластичность и прочность литейных сплавов значительно ниже. Это связано с грубой литейной структурой сплавов Термическая обработка отливок с последующим старением способствует раство-рению избыточных фаз, сконцентрированных по границам зерен и повышению пластичности и прочности сплава.

Особенностью магниевых сплавов является малая скорость диффузионных процессов (фазовые превращения протекают мед-ленно), что требует большой выдержки под закалку и старение. По этой причине закалка сплавов возможна только на воздухе. Старение литейных магниевых сплавов проводят при 200—300° С; под закалку их нагревают до 380—420° С; после закалки и старе-ния σ в = 250-270 МПа.

Магниевые сплавы можно применять, как жаропрочные, спо-собные работать при температурах до 400° С. Вследствие высокой удельной прочности магниевые сплавы широко применяют в авиа-ции, ракетостроении, автомобильной и электротехнической про-мышленности. Большим недостатком магниевых сплавов является низкая стойкость против коррозии во влажной атмосфере.

Титановые сплавы.

Титан является одним изважнейших совре-менных конструкционных материалов; обладает высокой проч-ностью, повышенной температурой плавления (1665° С), малой плотностью (4500 кг/м 3) и высокой коррозионной стойкостью даже в морской воде. На основе титана образовывают сплавы повышен-ной прочности, широко применяемые в авиации и ракетостроении, энергомашиностроении, судостроении, химической промышленности и других областях промышленности. Основными добавками в ти-тановых сплавах являются алюминий, молибден, ванадий, марга-нец, хром, олово и железо.

Титановые сплавы марок ВТ5, ВТ6-С, ВТ9 и ВТ16 подвергают отжигу, закалке и старению. Полуфабрикаты (прутки, поковки, трубы) из сплава, дополнительно легированного оловом (ВТ5-1), проходят рекристаллизационный отжиг при 700—800° С в целях снятия наклепа. Листовые титановые сплавы отжигают при 600—650° С. Длительность отжига поковок, прутков и труб состав-ляет 25—30 мин, алистов — 50—70 мин.

Высоконагруженные детали из сплава ВТ14, работающие при температуре 400° С, закаливают с последующим старением по ре-жиму: температура закалки 820—840° С, охлаждение в воде, ста-рение при 480—500° С в течение 12—16 ч; после закалки и старе-ния: σ в =1150-1400 МПа, 6 = 6—10%, твердость HRC56—60.

При разработке технологии термической oбработки меди и ее сплавов приходится учитывать две их особенности: высокую теплопроводность и активное взаимодействие с газами при нагреве. При нагреве тонких изделий и полуфабрикатов теплопроводность имеет второстепенное значение. При нагреве массивных изделий высокая теплопроводность меди является причиной более быстрого и равномерного их прогрева по всему сечению по сравнению, например, с титановыми сплавами.
В связи с высокой теплопроводностью при упрочняющей термической обработке медных сплавов не возникает проблемы прокаливаемости. При используемых на практике габаритах полуфабрикатов и изделий они прокаливаются насквозь.
Медь и сплавы на ее основе активно взаимодействуют с кислородом и парами воды при повышенных температурах, по крайней мере, более интенсивно, чем алюминий и его сплавы, В связи с этой особенностью при термической обработке полуфабрикатов и изделий из меди и ее сплавов часто применяют защитные атмосферы, в то время как в технологии термической обработки алюминия защитные атмосферы встречаются редко.
Отжиг меди и ее сплавов проводят с целью устранения тех отклонении от равновесном структуры, которые возникли в процессе затвердевания или в результате механического воздействия либо предшествующей термической обработки.
Гомогенизационный отжиг заключается в нагреве слитков до максимального возможной температуры, не вызывающей оплавления структурных составляющих сплавов. Ликвационные явления в меди и латунях развиваются незначительно, и нагрев слитков под горячую обработку давлением достаточен для их гомогенизации.
Основными сплавами меди, нуждающимися в гомогенизационном отжиге, являются оловянные бронзы, так как составы жидкой и твердой фаз в системе Cu-Sn сильно отличаются, в связи с чем развивается интенсивная дендритная ликвация.
В результате гомогенизационного отжига повышается однородность структуры и химического состава слитков. Гомогенизационный отжиг - одно из условий получения качественного конечного продукта.

Рекристаллизационный отжиг - одна из распространенных технологических стадий производства полуфабрикатов меди и сплавов на ее основе.
Температуру начала рекристаллизации меди интенсивно повышают Zr, Cd, Sn, Sb, Cr, в то время как Ni, Zn, Fe, Co оказывают слабое влияние. Повышение температуры начала рекристаллизации при одновременном присутствии нескольких элементов неаддитивно, но незначительно превышает вклад от наиболее эффективно действующей примеси. В определенных случаях, например, при введении в медь свинца и серы, суммарный эффект выше, чем отдельных эффектов. Раскисленная фосфором медь в отличие от кислородсодержащей меди склонна при отжиге к сильному росту зерна Порог рекристаллизации в присутствии фосфора сдвигается в область более высоких температур.
Критическая степень деформации для бескислородной меди с величиной зерна порядка 2*10в-2 см после отжига при 800°С в течение 6 ч составляет примерно 1%. Примеси, например железо, увеличивают критическую степень деформации, которая для латуней составляет 5-12% (рис. 44).

На температуру рекристаллизации латуней также влияет предшествующая обработка, в первую очередь степень холодной деформации и величина зерна сформировавшегося при этой обработке. Так, например, время до начала рекристаллизации латуни Л95 при температур 440° С составляет 30 мин при степени холодной деформации 30% и 1 мин при степени деформации 80%.
Величина исходного зерна действует на процесс кристаллизации противоположно повышению степени деформации. Например, в сплаве Л95 с исходным зерном 30 и 15 мкм отжиг после 50% деформации при температуре 440°С приводит к рекристаллизации через 5 и 1 мин соответственно. В то же время величина исходного зерна не влияет на скорость рекристаллизации, если температура отжига превышает 140°С.
На рис. 45 приведены данные по влиянию состава α-латуней на температуру отжига (степень деформации 45% время отжига 30 мин), которая обеспечивает получение заданной величины зерна. При одинаковых условиях деформации и отжига с увеличением содержания цинка величина зерна уменьшается, достигает минимума а затем растет. Так, например, после отжига при 500°С в течение 30 мин величина зерна составляет: в меди 0,025 мм; в латуни с 15% Zn 0,015 мм, а в латуни 35% Zn 0.035 мм. На рис 45 также видно, что в α-латунях зерно начинает расти при относительно низких температурах и растет вплоть до температур солидуса В двухфазных (α+β)- и специальных латунях рост зерна, как правило, происходит лишь при температурах, при которых остается одна β-фаза. Например, для латуни Л59 значительное увеличение зерна начинается при отжиге выше температуры 750° С.
Температуру отжига латуней выбирают при мерно на 250-350° С выше температуры начала рекристаллизации (табл. 16).

При отжиге сплавов меди с содержанием 32-39% Zn при температурах выше α⇔α+β-перехода выделяется β-фаза что вызывает неравномерный рост зерна. Отжиг таких сплавов желательно проводить при температурах, не превышающих линию α⇔α+β-равновесия системы Cu-Zn. В связи с этим латуни, лежащей по составу вблизи точки максимальной растворимости цинка в меди, следует отжигать в печах с высокой точностью регулировки температуры и большой однородностью распределения ее по объему меди.


На рис. 46 приведены оптимальные режимы отжига простых латуней по результатам обобщения технологических рекомендаций, накопленных в отечественной и мировой практике. Обнаруживается тенденция к повышению температуры полного отжига латуни с увеличением содержания в них цинка.
При выборе режимов рекристаллизационного отжига латуней следует учитывать, что сплавы, лежащие вблизи фазовой границы α/α+β (рис. 46), из-за переменной растворимости цинка в меди могут термически упрочняться. Закалка латуней, содержащих более 34% Zn, делает их склонными к старению (рис. 47), причем способность к упрочнению при старении растет с увеличением содержания цинка до 42%. Практического применения этот вид термического упрочнения латуней не нашел. Тем не менее скорость охлаждения латуней типа Л63 после рекристаллизационного отжига влияет на их механические свойства. Возможность распада пересыщенных растворов в α-латунях, содержащих более 34% Zn, и в α+β-латунях следует также иметь в виду при выборе режимов отжига для уменьшения напряжений. Сильная холодная деформация может ускорять распад пересыщенных α- и β-растворов при отжиге.


По литературным данным, температура начала ре кристаллизации латуни Л63 колеблется от 250 до 480° С. Наиболее мелкозернистая структура в сплаве Л63 образуется после отжига при температурах 300-400° С. Чем выше степень предшествующей холодной деформации, тем меньше величина рекристаллизованного зерна и больше твердость (рис. 48) при одинаковых условиях отжига.
Качество отожженного материала определяется не только его механическими свойствами, но и величиной рекристаллизованного зерна. Величина зерна в полностью рекристаллизованной структуре довольно однородна. При неправильно установленных режимах рекристаллизационного отжига в структуре четко обнаруживаются две группы зерен различной величины. Эта так называемая двойная структура особенно нежелательна при операциях глубокой вытяжки, изгиба или полировки и травлении изделии.

С увеличением размеров зерна до определенного пределa штампуемость латуней улучшается, но качество поверхности ухудшается. На поверхности изделия при величине зерна более 40 мкм наблюдается характерная шероховатость «апельсиновая корка».

Этапы эволюции деформированной структуры значительно растянуты во времени, и поэтому представляется возможным получение частично или полностью рекристаллизованной структуры с мелким зерном путем варьирования времени отжига. Полуфабрикаты с не полностью рекристаллизованной структурой с очень малым размером зерна штампуются без образования «апельсиновой корки».
Неполный отжиг, продолжительность которого определяется степенью предварительной деформации, проводят в интервале 250-400° С Для соблюдения точного технологического режима такой отжиг следует проводить в протяжных печах, где строго контролируется рабочая температура и продолжительность выдержки (скорость протяжки).
Неполный отжиг применяют преимущественно с целью уменьшения остаточных напряжений, которые могут приводить к так называемому «сезонному растрескиванию. Этот вид коррозии, присущий латуням с содержанием более 15% Zn, заключается в постепенном развитии межкристаллитных трещин при одновременном воздействии напряжении (остаточных и приложенных) и специфических химических реагентов (например, растворы и пары аммиака, растворы ртутных солей, влажный серный ангидрид, различные амины и т. д.). Считается, что чувствительность латуней к сезонному растрескиванию обусловлена скорее неоднородностью напряжении, чем их абсолютной величиной.
Эффективность отжига для уменьшения остаточных напряжений проверяют испытанием ртутной пробой. Метод испытания ртутной пробой дает качественную оценку наличия остаточных напряжений. Он основан на различном поведении напряженного и ненапряженного материала при воздействии азотнокислой ртути. На напряженном материале в ходе испытания появляются продольные и поперечные трещины, видимые невооруженным глазом. Они появляются в местах растягивающих напряжении, которые могут вызвать разрушение изделия в эксплуатации или при хранении в результате коррозионного растрескивания.
Режимы отжига латуней для уменьшения остаточных напряжении даны на рис. 46 и в табл. 16.

WikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Благодаря отжигу медь становится более мягкой и пластичной, после него она легко гнется. Это позволяет ковать металл и придавать ему желательную форму, не ломая его. Можно отжечь медь любой марки и толщины, если у вас есть достаточно мощная горелка. Наиболее простой способ отжечь медь заключается в том, чтобы разогреть ее кислородно-ацетиленовой горелкой, а затем быстро охладить в воде.

Шаги

Часть 1

Подготовка к отжигу

    Перед работой с горелкой наденьте защитные очки. При обращении с открытым пламенем необходимо использовать защитные очки. Наденьте защитные очки со степенью затемнения не ниже 4, чтобы как следует защитить глаза от яркого света ацетиленового пламени. Если смотреть на пламя ацетиленовой горелки без защитных очков, можно серьезно повредить глаза.

    • Используемые для отжига, дуговой резки и сварки защитные очки оцениваются по шкале от 2 до 14, где 2 - наименее тонированные, а 14 - наиболее затемненные очки. Ацетиленовая горелка дает намного менее яркое пламя, чем сварочная, поэтому для защиты глаз достаточно слабо затемненных стекол.
    • Если у вас нет защитных очков, приобретите их в магазине хозяйственных товаров или сварочного оборудования.
  1. Подсоедините по одному шлангу к каждому баллону , чтобы подготовить ацетиленовую горелку. Сама горелка, которая выпускает пламя, имеет два выходящих из нее шланга. Подсоедините красный шланг горелки к ацетиленовому, а черный - к кислородному баллону. Ацетилен зажжет пламя, после чего кислород продолжит подпитывать его. Изменяя количество поступающего из баллона кислорода, вы сможете контролировать интенсивность пламени.

    Поверните ацетиленовый вентиль на четверть оборота по часовой стрелке. Тем самым вы откроете баллон с ацетиленом, и газ начнет поступать в редуктор. Поверните вентиль лишь на четверть оборота - этого хватит для того, чтобы ацетилен поддерживал пламя, но поток газа не будет слишком сильным, и вы сможете контролировать его. Следите за манометром и отрегулируйте вентиль так, чтобы давление составляло 0,5 атмосферы.

    • Манометр расположен наверху баллона с ацетиленом. Он имеет круглую шкалу с надписями «давление» и «атм».
    • После того как пламя установится, вы сможете регулировать его интенсивность с помощью вентиля на ацетиленовом баллоне. Вентиль расположен в верхней части баллона. Как правило, он находится рядом с манометром (или даже подсоединен к нему).
  2. До конца отверните вентиль на баллоне с кислородом против часовой стрелки. Затем отрегулируйте давление с помощью винта на редукторе (поворачивайте его по часовой стрелке). При этом следите за манометром на кислородном баллоне - добейтесь того, чтобы он показывал 2,7 атмосферы.

    • Кислородный вентиль расположен в верхней части баллона с кислородом. На нем может быть стрелка, которая указывает на то, в какую сторону следует откручивать вентиль.
    • Необходимо добиться правильного соотношения кислорода и ацетилена, чтобы получить контролируемое горячее пламя.
  3. Подожгите ацетиленовую горелку с помощью кремниевой зажигалки. Чтобы зажечь пламя, возьмите в одну руку горелку, а другой рукой поверните вентиль вверху баллона с ацетиленом на половину оборота по часовой стрелке. В результате в горелку начнет поступать газ. Поднесите кремниевую зажигалку к соплу горелки примерно на 1,5 сантиметра. Щелкайте ею до тех пор, пока не появится оранжево-красное пламя.

    • Зажигайте пламя не позднее, чем через 2–3 секунды после того, как отвернете вентиль на баллоне с ацетиленом, так как этот газ сильно воспламеняется.
  4. Отрегулируйте вентиль на горелке так, чтобы пламя стало голубым. После того как горелка начнет выпускать светло-оранжевое пламя, поверните кислородный вентиль сбоку горелки по часовой стрелке, чтобы подать в горящий ацетилен кислород. Продолжайте крутить вентиль до тех пор, пока пламя не станет голубым. Голубой цвет пламени свидетельствует о том, что его температура идеально подходит для отжига меди.

    • Крутите кислородный вентиль медленно, чтобы избежать внезапной вспышки пламени.
    • Слишком горячее пламя сожжет металл, а если пламя будет слишком холодным, оно недостаточно разогреет медь, и ее долговечность и пластичность не изменятся.

    Часть 2

    Нагрев меди
    1. При отжиге держите пламя на расстоянии 7,5–10 сантиметров от поверхности меди. Направьте пламя прямо на медную пластину или трубу. Не подносите горелку слишком близко к металлу, иначе вы обожжете его поверхность. Держите горелку на расстоянии не менее 10–13 сантиметров от поверхности меди и ждите, пока металл разогреется.

      Быстро перемещайте пламя горелки по поверхности металла. Двигайте горелкой вдоль всей поверхности, чтобы равномерно разогреть медь. Необходимо равномерно распределить тепло по объему металла, чтобы отдельные участки не прошли отжиг быстрее, чем другие. При этом вы заметите, что в местах нагрева поверхность меди становится красной или оранжевой.

      • При работе с открытым пламенем держите под рукой сухой химический огнетушитель. Если что-нибудь воспламенится, немедленно используйте огнетушитель.
    2. Более толстые и массивные куски меди следует разогревать дольше. Отжиг позволяет смягчить любой кусок меди, независимо от его толщины и размеров. Однако чем толще металл, тем дольше следует разогревать его.

      • Например, тонкий кусочек ювелирной меди достаточно нагревать в течение 20 секунд, чтобы отжечь его. В то же время массивную медную трубу или лист меди толщиной 1,5 сантиметра необходимо нагревать хотя бы 2–3 минуты.
    3. Держите пламя на одном месте, пока медь не покраснеет. При нагреве ацетиленовой горелкой поверхность меди сначала почернеет. Не беспокойтесь: после этого она станет красной. Продолжайте перемещать пламя по поверхности металла до тех пор, пока черный цвет не сменится светящимся ярко-красным. Такой цвет свидетельствует о том, что медь отожжена.

Закалка металла позволяет произвести некоторые изменения в его структуре, сделав ее более мягкой или наоборот твердой. При закалке очень многое зависит не только от самого нагрева, но и от процесса и времени охлаждения. В основном производители производят закалку стали, делая изделие более прочным, однако, может быть произведена и закалка меди, если возникает такая необходимость.

Закалка меди – производственный процесс

Закалка меди производится при помощи использовании метода отжига. Во время термообработки медь можно сделать более мягкой или более твердой в зависимости от того, для чего она будет применяться в дальнейшем. Однако важно помнить, что способ закалки меди значительно отличается от того, при помощи которого закаливается сталь.

Закалка меди происходит при медленном остывании в воздушной среде. Если необходимо получить более мягкую структуру, тогда закалка производится при быстром охлаждении металла в воде сразу же после нагрева. Если нужно получить очень мягкий металл, то следует нагреть медь до красна (это примерно 600°), а затем опустить в воду. После того, как изделие пройдет процесс деформации и приобретет необходимую форму, его можно будет снова нагреть до 400°, а затем позволить остыть в воздушной среде.

Установка для закалки меди

Закалка меди производится в специальном оборудовании, предназначенном для этого. Существует несколько видов установок для закалки, но наиболее популярным на сегодняшний день стало индукционное оборудование. Индукционная установка отлично подходит для закалки меди, позволяя получить изделие высокого качества. Благодаря автоматизированному программному обеспечению ТВЧ оборудования, оно настраивается с высокой точностью, где указывается время нагрева, температура, а также способ охлаждения металла.

Если предприятие постоянно производит закалку металлических изделий, то лучше всего будет обратить внимание на специальный комплекс оборудования, созданный для комфортной быстрой закалки. Закалочный комплекс ЭЛСИТ обладает всем необходимым оборудованием для закалки ТВЧ . В комплект закалочного комплекса входит: индукционная установка, закалочный станок , манипулятор и модуль охлаждения. Если заказчику необходимо производить закалку изделий, имеющих разную форму, то в комплектацию закалочного комплекса может быть включен набор индукторов различных размеров.