Мой бизнес - Франшизы. Рейтинги. Истории успеха. Идеи. Работа и образование
Поиск по сайту

Самые твердые материалы: виды, классификация, характеристики, интересные факты и особенности, химические и физические свойства. Самые твердые материалы в мире Самый прочный материал в мире тверже алмаза

Драгоценный камень некоторое время назад потерял свой титул самого твёрдого материала в мире, уступив искусственным наноматериалам немного большей твёрдости. Сегодня редкое натуральное вещество, по всей видимости, оставит всех прочих позади - оно на 58% твёрже алмаза.

Зиченг Пэн (Zicheng Pan) из Шанхайского университета Цзяо Тун совместно с коллегами смоделировал, как атомы в двух субстанциях предположительно имеющих свойства очень твёрдых материалов будут реагировать на воздействие специального датчика.

Экстремальные условия

Первый - вюрцит бор нитрид имеет сходную с алмазом структуру, но состоит из других атомов.

Второй - минерал лонсдейлит, или гексагональный алмаз, состоит из атомов углерода, таких как алмаз, но они организованы по-другому.
Моделирование показало, что вюрцит бор нитрид способен выдержать на 18% больше воздействия, чем алмаз, а лонсдейлит - на 58% больше. Если результаты подтвердятся в рамках физических экспериментов, оба материала окажутся намного твёрже любого известного вещества.

Но произвести такие испытания будет не просто, т.к. оба материала не часто встречаются в природе.

Редкое вещество лонсдейлит формируется, когда метеориты, содержащие графит падают на Землю, а вюрцит бор нитрид формируется в процессе вулканических извержений при высоких температурах и давлении.

Гибкость

При успешных результатах вюрцит бор нитрид может стать наиболее применимым из двух, благодаря тому, что он устойчивый к кислороду при более высоких температурах, чем алмаз. Это делает его идеальным для применения на концах режущих и сверлильных инструментов, работающих при очень высоких температурах, или в качестве коррозиеустойчивых плёнок - на поверхности космических кораблей, например.

Парадоксально, своей твёрдостью вюрцит бор нитрид обязан гибкости связей между атомами, которые его образуют. Когда материал подвергается воздействию, некоторые связи меняют направление почти на 90º, чтобы ослабить напряжение. После того, как алмаз и вюрцит бор нитрид были подвергнуты одному и тому же процессу, что-то в структуре вюрцит бор нитрида сделало его почти на 80% твёрже, утверждает соавтор исследования Чанфенг Чен (Changfeng Chen) из университета Невады в Лас-Вегасе.

Учёные подчёркивают, для того, чтобы доказать теорию, необходимы монокристаллы каждого из материалов. На данный момент не существует способов изолировать или вырастить такие кристаллы.

На сегодняшний день не существует единой классификации полудрагоценных камней , есть лишь условное деление. Узнать все о камнях, их свойства описания можно на сайте http://www.catalogmineralov.ru/cont/poludragocennye_kamni.htm. Решая сделать подарок с полудрагоценным камнем близкому человеку, для начала ознакомьтесь с этим камнем.

Алмаз до сих пор остается эталоном твёрдости и используется в различных методиках измерения механической твёрдости материалов (методы Роквелла, Виккерса, Мооса). Но существуют материалы, не только сравнимые по твердости с алмазом, но и превосходящие его по этой характеристике.

В статье для сравнения материалов приведена их микротвёрдость по Виккерсу. Сверхтвёрдыми считаются материалы, твёрдость которых превышает 40 ГПа. Для «эталонного» алмаза этот показатель может колебаться в пределах 70 -150 ГПа в зависимости от его чистоты и метода получения (как правило, приводится величина твёрдости алмаза 115 ГПа). То же самое относится и к другим материалам: их твёрдость меняется в зависимости от условий синтеза образца, а иногда варьируется и в зависимости от направления приложенной к нему нагрузки.

1. Фуллерит (до 310 ГПа)

Полимеризованный фуллерит - самое твёрдое вещество, известное науке на данный момент. Он представляет собой молекулярный кристалл — структуру, в узлах которой находятся не отдельные атомы, а целые молекулы (фуллерены — одна из аллотропных модификаций углерода, по форме напоминающая футбольные мячики). Фуллерит оставляет царапины на алмазной поверхности, как на пластмассе.

2. Лонсдейлит (до 152 ГПа)

Предсказание существования лонсдейлита практически совпало по времени с его обнаружением в природе. Эта аллотропная модификация углерода, во многом похожая на алмаз, была найдена в метеоритном кратере. Но природный лонсдейлит, который, вероятно, образовался из графита, входившего в состав метеорита, не отличался рекордной твёрдостью. Лишь в 2009 году ученые доказали, что в отсутствии примесей лонсдейлит может быть твёрже алмаза. Высокую твёрдость ему придает примерно тот же механизм, который действует в случае вюртцитного нитрида бора.

3. Вюртцитный нитрид бора (до 114 ГПа)

Нитрид бора с вюртцитной (плотной гексагональной) кристаллической структурой твёрже, чем кажется: в момент приложения нагрузки он претерпевает локальные структурные модификации, межатомные связи в его решетке перераспределяются, и твёрдость материала вырастает на 78%.

4. Наноструктурированный кубонит (до 108 ГПа)

Кубический нитрид бора был впервые получен в 1957 году Робертом Венторфом (Robert H. Wentorf Jr.) для компании General Electric . В 1969 году компания зарегистрировала торговую марку «Боразон» для кристалла.

В СССР кубический нитрид бора был впервые синтезирован в Институте физики высоких давлений Академии наук под руководством академика Л. Ф. Верещагина . С 1965 года эльбор синтезировался в промышленных масштабах по технологии Абразивного завода «Ильич» (Ленинград).

Уникальные свойства кубонита (также известного под названиями эльбора, боразона и кингсонгита) широко используются в промышленности. Твёрдость кубонита (кубической модификации нитрида бора) близка к алмазной и составляет 80−90 ГПа. В силу закона Холла-Петча, уменьшение размера кристаллических зерен ведет к увеличению твёрдости, и ученые доказали, что наноструктурирование кубонита способно увеличить его твёрдость до 108 ГПа.

5. Нитрид углерода-бора (до 76 ГПа)

Атомы азота, углерода и бора близки по размерам. Углерод и бор образуют схожие кристаллические структуры, отличающиеся высокой твёрдостью. Ученые предпринимают попытки синтезировать сверхтвёрдые материалы, состоящие из атомов всех трех типов — и не безуспешно: например, кубическая модификация BC 2 N демонстрирует твёрдость 76 Гпа.

6. Карбид бора (до 72 ГПа)

Карбид бора — распространенный в современной промышленности материал — был получен еще в позапрошлом веке. Его микротвёрдость (49 ГПа) может быть значительно повышена введением в кристаллическую решетку ионов аргона — до 72 ГПа.

7. Бор-углерод-кремний (до 70 ГПа)

Сплавы на основе системы бор-углерод-кремний чрезвычайно устойчивы к химическому воздействию и высокой температуры, они отличаются высокой микротвёрдостью, достигающей 70 ГПа (для B 4 C-B 4 Si)

8. Борид магния-алюминия (до 51 ГПа)

Сплав бора, магния и алюминия известен своим низким коэффициентом трения скольжения (если бы этот материал не был так дорог, его можно было бы использовать для изготовления машин и механизмов, работающих без смазки) и высокой твёрдостью. Тонкие пленки AlMgB 14 , полученные методомимпульсного лазерного напыления, демонстрируют микротвёрдость до 51 ГПа.

9. Диборид рения (до 48 ГПа)

Механические свойства соединения бора и рения весьма необычны: из-за послойного чередования различных атомов диборид рения анизотропен, т. е.при измерении твёрдости по различным кристаллографическим плоскостям получаются разные значения. При испытаниях под малой нагрузкой диборид рения демонстрирует твёрдость 48 ГПа, однако при увеличении нагрузки значение твёрдости резко падает, устанавливаясь на уровне примерно 22 ГПа. Поэтому некоторые исследователи сомневаются, нужно ли причислять диборид рения к сверхтвёрдым материалам.

10. Монокристаллический субоксид бора (до 45 ГПа)

Субоксид бора, содержащий «недостаточное» количество атомов кислорода, явно демонстрирует свойства керамических материалов: высокую прочность, химическую инертность, устойчивость к истиранию при относительно невысокой плотности. Субоксид бора способен образовывать зерна в форме икосаэдров, которые не являются ни отдельными кристаллами, ни квазикристаллами — это кристаллы-двойники, стоящие из 20 «сросшихся» кристаллов-тетраэдров. Твёрдость монокристаллов субоксида бора составляет 45 ГПа.

Твердость алмаза можно определить с помощью нескольких известных ранее шкал. Твердость минералов – такой показатель, измерения которого лучше избегать, если такая возможность существует. Чтобы проверить твердость, нужно царапать минерал различными материалами. Фридрих Моос – известный ученый-минералог – в 1811 году предложил использовать для определения твердости камней специальную шкалу, придуманную им. Впоследствии ее назвали шкалой Мооса.

Что же такое твердость? Простыми словами, это сопротивление, которое оказывает минерал, когда его пытаются поцарапать другим минералом или материалом. Фридрих Моос разработал шкалу с коэффициентом твердости от 1 до 10, где 1 – это тальк, а 10 – алмаз. Ученый взял в свою эталонную шкалу легкодоступные минералы и построил их в линейку по возрастанию сопротивления другим минералам. Числа твердости, указанные Моосом, не определяют истинную твердость минерала.

Алмаз – самый твердый в мире минерал естественного происхождения, по шкале Мооса его показатель равняется 10. Корунд имеет показатель, равный 9. Ученый удалось синтезировать карборунд, который превосходит по твердости корунд, но алмаз он все равно не царапает. Сталь по твердости намного уступает алмазу, ее твердость находится в диапазоне от 5,5 до 7,5 в зависимости от сплава. Тверже алмаза сплав стали сделать не удалось. Но твердость стали определяется с помощью алмазных пластин: насколько пластинка или пирамидка вдавится в образец стали, такая и будет твердость. Сейчас все чаще на производстве алмазы заменяются стальными шариками специальных сплавов.

Прочность алмаза, или почему алмаз такой твердый

Очень давно, когда на Земле еще не было жизни, а сама планета была молодой, на поверхности происходили природные процессы. Тектоническая порода находилась в расплавленном состоянии, она перемешивалась под действием высоких температур и паров различных испарений, а потом медленно остывала. Все эти процессы привели к формированию самого твердого камня, который сейчас называется алмазом.

Происхождение названия данного камня уходит своими корнями в глубокую древность, почему его стали называть именно алмазом, до конца остается неизвестным, но существует ряд предположений:

  1. Слово алмаз пришло из Греции. “Адамас” – “твердый”, “несокрушимый”.
  2. “Ал-ма” от персидского “твердый”.
  3. Название камня происходит от женского имени Элиза или Элайза. Полная форма этого имени Елизавета, означает «Божья милость». По легенде была девушка, которая обладала даром исцеления людей. Имя ее было Элиза. Она была крепка душой и телом, могла своим умением поднять на ноги даже самого тяжелобольного человека. Однажды Элиза влюбилась в прекрасного юношу, он ответил на ее чувства, их любовь была прекрасна, но длилась недолго. Элиза отправилась в дальний путь, чтобы пополнить запасы целебных трав. В это время ее возлюбленный тяжело заболел. Когда Элиза вернулась, он был уже мертв. Девушка жила в горах, она зашла в одну из пещер горной местности и горько заплакала. Это были самые первые ее слезы, они обратились в камни, которые потом стали называть алмазами.

Твердость алмаза и графита

Интересным фактом является то, что алмаз – самый крепкий минерал, а графиту по шкале Мооса соответствует число 1, что означает, что он самый мягкий.

Алмаз и графит состоят из одинаковых атомов одного и того же химического элемента – углерода. Тогда почему одно вещество самое мягкое, а другое – самое твердое? Ответ очень прост. Все дело в химических связях или кристаллических решетках этих минералов. Атомы углерода по-разному связаны между собой, поэтому они проявляют разные химические и физические свойства: имеют различный внешний вид, твердость, пластичность, блеск и другие параметры. Графит имеет слоистую структуру. Атомы углерода между собой связаны слабо, это и объясняет то, что графит очень мягкий.

Лонсдейлит – синтетический алмаз

В природе нет материала тверже алмаза, но наука не стоит на месте. Ученым удалось синтезировать вещество, которое является на 58% прочнее алмаза. Название этого материала – лонсдейлит. Он может выдержать давление на 55 ГПа больше, чем самый твердый природный минерал. Но его использование почти невозможно, потому что его очень трудно получать. Стоимость получения не оправдывает затраченных средств, а в его применении нет особой необходимости. Назван лонсдейлит в честь кристаллографа Кетлин Лонсдейл, которая была родом из Британии.

Все еще думаете, что алмаз – самое твердое вещество на нашей планете? Прошлый век! В нашем ТОП 10 – самые твердые вещества на планете, и в них только на четвертом месте.

1 Ульратвердый фуллерит

Поцарапать алмаз? Запросто. Для этого подходит ультратвердый фуллерит. В гранях этого кристалла – целые молекулы фуллерона, что делает его необычайно крепким, примерно в три раза крепче алмаза.

2


В отличие от полностью искусственного фуллерита лонсдейлит можно найти в местах столкновения астероидов с земной поверхностью. Особенностью этого вещества является способность к модифицированию под давлением. Если нагрузка извне возрастает, лонсдейлит перестраивает свою структуру так, чтобы стать еще крепче.

3


Аналогичный механизм запускается у бронзового медалиста нашей Десятки самых твердых веществ на земле. Это вюртцитный нитрид бора. При увеличении давления на этот материал, он становится тверже своего обычного состояния почти в два раза.

4


Натуральный алмаз все еще цепляется за свои позиции, однако… мало кто знает, что алмазы по твердости тоже бывают разными. В зависимости от качества камня его твердость колеблется от 70 до 150 гигапаскалей. Но, все же, твердую четверку он заслуживает.

5


Все это названия одного и того же вещества – кубического нитрида бора, открытого еще в 1985 году. Интересно узнать, что боразон кое в чем алмаз превосходит – его температура горения почти в два раза превышает температуру горения алмаза.

6


А вот это вещество существует только потенциально и до сих пор доказано лишь теоретически. Тем не менее, когда оно будет создано, Нитрид углерода бора (c-BC2N) будет в некоторых аспектах тверже алмаза.

7


Карбид бора – один из старожилов нашей десятки самых твердых веществ на планете. В 2016 исполняется 123 года с момента его открытия. И, тем не менее, он до сих пор держит марку – это одно из самых тугоплавких и химически стойких веществ, не растворяющееся даже в кипящих кислотах.

8


Диборид отличается исключительной прочностью в одном из направлений своей кристаллической решетки. Чтобы получить это вещество, диборид магния смешивают с хлоридом осмия и выдерживают при температуре +1000С три дня. И то и другое вещество растворяются даже водой, но получившиеся кристаллы – гораздо тверже.

9


Еще один кристалл, который наступает на пятки алмазу. Его кристаллическая решетка в отдельных направлениях даже тверже этого природного минерала. В то же время, по другим – в пять-шесть раз мягче. Так что 9 место он получает заслужено.

10


Трехкомпонентное вещество, которое обладает идеальным скольжением и отменной твердостью. Материал существует в виде тончайшего напыления.

В своей деятельности человек использует различные качества веществ и материалов. И совсем не маловажным является их крепость и надежность. О самых твердых материалах в природе и созданных искусственно пойдет речь в этой статье.

Общепринятый эталон

Для определения прочности материала используется шкала Мооса - шкала оценки твердости материала по его реакции на царапание. Для обывателя самый твердый материал - это алмаз. Вы удивитесь, но этот минерал всего лишь где-то на 10-м месте среди самых твердых. В среднем материал считают сверхтвердым, если его показатели выше 40 ГПа. Кроме того, при выявлении самого твердого материала в мире следует учитывать и природу его происхождения. При этом крепость и прочность часто зависят от воздействия внешних факторов на него.

Самый твердый материал на Земле

В данном разделе обратим внимание на химические соединения с необычной кристаллической структурой, которые намного прочнее алмазов и вполне могут его поцарапать. Приведем топ-6 самых твердых материалов созданных человеком, начиная с наименее твердого.

  • Нитрид углерода - бора. Это достижение современной химии имеет показатель прочности 76 ГПа.
  • Графеновый аэрогель (аэрографен) - материал в 7 раз легче воздуха, восстанавливающий форму после 90 % сжатия. Удивительно прочный материал, способный к тому же впитать количество жидкости или даже масла в 900 раз больше собственного веса. Этот материал планируется использовать при разливах нефти.
  • Графен - уникальное изобретение и самый прочный материал во Вселенной. О нем ниже чуть подробнее.
  • Карбин - линейный полимер аллотропного углерода, из которого делают супертонкие (в 1 атом) и суперпрочные трубки. Долгое время никому не удавалось построить такую трубку длиною более чем 100 атомов. Но австрийским ученым из Венского Университета удалось преодолеть этот барьер. Кроме того, если раньше карбин синтезировался в малых количествах и был очень дорогой, то сегодня появилась возможность синтезировать его тоннами. Это открывает новые горизонты для космотехники и не только.
  • Эльбор (кингсонгит, кубонит, боразон) - это наноконструированное соединение, которое сегодня широко применяется в обработке металлов. Твердость - 108 ГПа.

  • Фуллерит - вот какой самый твердый материал на Земле, известный человеку сегодня. Его прочность в 310 ГПа обеспечивается тем, что он состоит не из отдельных атомов, а из молекул. Эти кристаллы с легкостью поцарапают алмаз, как нож масло.

Чудо рук человеческих

Графен - еще одно изобретение человечества на основе аллотропных модификаций углерода. С виду - тонкая пленка толщиной в один атом, но в 200 раз прочнее стали, обладающая исключительной гибкостью.

Именно о графене говорят, что, чтобы его проткнуть, на кончике карандаша должен стоять слон. При этом его электропроводность выше кремния компьютерных чипов в 100 раз. Очень скоро он покинет лаборатории и войдет в повседневную жизнь в виде солнечных панелей, сотовых телефонов и чипов современных компьютеров.

Два очень редких результата аномалий в природе

В природе встречаются очень редкие соединения, которые обладают невероятной прочностью.

  • Нитрид бора - вещество, кристаллы которого имеют специфическую вюрцитную форму. С приложением нагрузок соединения между атомами в кристаллической решетке перераспределяются, повышая прочность на 75 %. Показатель твердости - 114 ГПа. Образуется это вещество при вулканических извержениях, в природе его очень мало.
  • Лонсдейлит (на главном фото) - соединение аллотропного углерода. Материал был обнаружен в воронке метеорита, считается, что он образовался из графита под воздействием условий взрыва. Показатель твердости - 152 ГПа. В природе встречается редко.

Чудеса живой природы

Среди живых существ на нашей планете есть такие, у которых имеется что-то совершенно особенное.

  • Паутина Caerostris darwini. Нить, которую выделяет паук Дарвина, прочнее стали и тверже кевлара. Именно эта паутина была взята учеными НАСА на вооружение при разработке космических защитных костюмов.
  • Зубы моллюска Морское блюдечко - их волокнистая структура сегодня изучается бионикой. Они настолько прочные, что позволяют моллюску отодрать водоросли, вросшие в камень.

Железная береза

Еще одно чудо природы - береза Шмидта. Ее древесина - самый твердый биологического происхождения. Растет она на Дальнем Востоке в заповеднике Кедровая Падь и внесена в Красную Книгу. Прочность сравнима с железом и чугуном. Но при этом не подвержена коррозии и гниению.

Повсеместному использованию древесины которую не пробивают даже пули, препятствует ее исключительная редкость.

Самый твердый из металлов

Это металл бело-голубого цвета - хром. Но его прочность зависит от его чистоты. В природе его содержится 0,02 %, что совсем не так мало. Добывают его из силикатных горных пород. Много хрома содержат и падающие на Землю метеориты.

Он коррозионностойкий, жаропрочный и тугоплавкий. Хром входит в состав многих сплавов (хромистая сталь, нихром), которые широко используются в промышленности и в антикоррозийных декоративных покрытиях.

Вместе прочнее

Один металл - это хорошо, но в некоторых сочетаниях возможно придание сплаву удивительных свойств.

Сверхпрочный сплав титана и золота - единственный крепкий материал, который оказался биосовместимым с живыми тканями. Сплав beta-Ti3Au настолько прочный, что его невозможно измельчить в ступке. Уже сегодня ясно, что это будущее различных имплантатов, искусственных суставов и костей. Кроме того, он может быть применен в буровом производстве, изготовлении спортивного снаряжения и во многих других областях нашей жизни.

Подобными свойствами может обладать и сплав палладия, серебра и некоторых металлоидов. Над этим проектом сегодня работают ученые института Калтека.

Будущее по 20 долларов за моток

Какой самый твердый материал уже сегодня может купить любой обыватель? Всего за 20 долларов можно купить 6 метров ленты Braeön. С 2017 года она поступила в продажу от производителя Дастина Маквильямса. Химический состав и способ производства хранятся в строгом секрете, но качества ее поражают.

Лентой можно скрепить абсолютно все. Для этого ее необходимо обмотать вокруг скрепляемых деталей, разогреть обычной зажигалкой, придать пластичному составу нужную форму и все. После остывания стык выдержит нагрузку в 1 тонну.

И твердый, и мягкий

В 2017 году появилась информация о создании удивительного материала - самого твердого и самого мягкого одновременно. Этот метаматериал изобрели ученые из Университета Мичиган. Им удалось научиться управлять структурой материала и заставлять его проявлять различные свойства.

Например, при использовании его для создания автомобилей при движении кузов будет обладать жесткостью, а при столкновении - мягкостью. Кузов абсорбирует энергию соприкосновения и защитит пассажира.