Мой бизнес - Франшизы. Рейтинги. Истории успеха. Идеи. Работа и образование
Поиск по сайту

Снип 3.06 07 86 мосты и трубы. Мосты и трубы

ГОСТ 25380-82

Группа Ж19

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЗДАНИЯ И СООРУЖЕНИЯ

Метод измерения плотности тепловых потоков,

проходящих через ограждающие конструкции

Buildings and structures.

Method of measuring density of heat flows

passing through enclosure structures

Дата введения 1983 - 01-01

УТВЕРЖДЕН И ВВЕДЕН в действие постановлением Государственного комитета СССР по делам строительства от 14 июля 1982 г. № 182

ПЕРЕИЗДАНИЕ. Июнь 1987 г.

Настоящий стандарт устанавливает единый метод определения плотности тепловых потоков, проходящих через однослойные и многослойные ограждающие конструкции жилых, общественных, производственных и сельскохозяйственных зданий и сооружений при экспериментальном исследовании и в условиях их эксплуатации.

Измерения плотности тепловых потоков проводят при температуре окружающего воздуха от 243 до 323 К (от минус 30 до плюс 50°С) и относительной влажности воздуха до 85%.

Измерения плотности тепловых потоков позволяют количественно оценить теплотехнические качества ограждающих конструкций зданий и сооружений и установить реальные расходы тепла через наружные ограждающие конструкции.

Стандарт не распространяется на светопрозрачные ограждающие конструкции.

1.Общие положения

1.1. Метод измерения плотности теплового потока основан на измерении перепада температуры на "вспомогательной стенке" (пластинке), устанавливаемой на ограждающей конструкции здания. Этот температурный перепад, пропорциональный в направлении теплового потока его плотности, преобразуется в э.д.с. батарей термопар, расположенных во "вспомогательной стенке" параллельно по тепловому потоку и соединенных последовательно по генерируемому сигналу. "Вспомогательная стенка" и батарея термопар образуют преобразователь теплового потока

1.2. Плотность теплового потока отсчитывается по шкале специализированного прибора, в состав которого входит преобразователь теплового потока, или рассчитывается по результатам измерения э.д.с. на предварительно отградуированных преобразователях теплового потока.

Схема измерения плотности теплового потока приведена на чертеже.

Схема измерения плотности теплового потока

1 - ограждающая конструкция; 2 -преобразователь теплового потока; 3 - измеритель э.д.с.;

Температура внутреннего и наружного воздуха; , , - температура наружной,

внутренней поверхностей ограждающей конструкции вблизи и под преобразователем соответственно;

Термическое сопротивление ограждающей конструкции и преобразователя теплового потока;

Плотность теплового потока до и после закрепления преобразователя.

2. Аппаратура

2.1. Для измерения плотности тепловых потоков применяют прибор ИТП-11 (допускается применение предшествующей модели прибора ИТП-7) по техническим условиям.

Технические характеристики прибора ИТП-11 приведены в справочном приложении 1.

2.2. При теплотехнических испытаниях ограждающих конструкций допускается проводить измерения плотности тепловых потоков при помощи отдельно изготовленных и отградуированных преобразователей теплового потока с термическим сопротивлением до 0,025-0,06 (кв.м )/Вт и приборов, измеряющих э.д.с., генерируемую преобразователями.

Допускается применение преобразователя, используемого в установке для определения теплопроводности по ГОСТ 7076-78.

2.3. Преобразователи теплового потока по п.2.2 должны удовлетворять следующим основным требованиям:

материалы для "вспомогательной стенки" (пластинки) должны сохранять свои физико-механические свойства при температуре окружающего воздуха от 243 до 323 К (от минус 30 до плюс 50°С);

материалы не должны смачиваться и увлажняться водой в жидкой и парообразной фазах;

отношение диаметра преобразователя к его толщине должно быть не менее 10;

преобразователи должны иметь охранную зону, расположенную вокруг батареи термопар, линейный размер которой должен составлять не менее 30% радиуса или половины линейного размера преобразователя;

каждый изготовленный преобразователь теплового потока должен быть отградуирован в организациях, которые в установленном порядке получили право на выпуск этих преобразователей;

в указанных выше условиях внешней среды градуировочные характеристики преобразователя должны сохраняться не менее одного года.

2.4. Градуировку преобразователей по п.2.2 допускается проводить на установке для определения теплопроводности по ГОСТ 7076-78, в которой плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонных образцах материалов, аттестованных по ГОСТ 8.140-82 и установленных вместо испытуемых образцов. Метод градуировки преобразователя теплового потока приведен в рекомендуемом приложении 2.

2.5. Проверка преобразователей производится не реже одного раза в год, как это указано в пп. 2.3, 2.4.

2.6. Для измерения э.д.с. преобразователя теплового потока допускается использовать переносной потенциометр ПП-63 по ГОСТ 9245-79, цифровые вольтамперметры В7-21, Ф30 или другие измерители э.д.с., у которых расчетная погрешность в области измеряемых э.д.с. преобразователя теплового потока не превышает 1% и входное сопротивление не менее чем в 10 раз превышает внутреннее сопротивление преобразователя.

При теплотехнических испытаниях ограждающих конструкций с использованием отдельных преобразователей предпочтительно применять автоматические регистрирующие системы и приборы.

3.Подготовка к измерению

3.1. Измерение плотности тепловых потоков проводят, как правило, с внутренней стороны ограждающих конструкций зданий и сооружений.

Допускается проведение измерений плотности тепловых потоков с наружной стороны ограждающих конструкций в случае невозможности проведения их с внутренней стороны (агрессивная среда, флуктуации параметров воздуха) при условии сохранения устойчивой температуры на поверхности. Контроль условий теплообмена проводят с помощью термощупа и средств для измерения плотности теплового потока: при измерении в течение 10 мин их показания должны быть в пределах погрешности измерений приборов.

3.2. Участки поверхности выбирают специфические или характерные для всей испытываемой ограждающей конструкции в зависимости от необходимости измерения локальной или усредненной плотности теплового потока.

Выбранные на ограждающей конструкции участки для измерений должны иметь поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, иметь одинаковые условия по лучистому теплообмену и не должны находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

3.3. Участки поверхности ограждающих конструкций, на которые устанавливают преобразователь теплового потока, зачищают до устранения видимых и осязаемых на ощупь шероховатостей.

3.4. Преобразователь плотно прижимают по всей его поверхности к ограждающей конструкции и закрепляют в этом положении, обеспечивая постоянный контакт преобразователя теплового потока с поверхностью исследуемых участков в течение всех последующих измерений.

При креплении преобразователя между ним и ограждающей конструкцией не допускается образование воздушных зазоров. Для исключения их на участке поверхности в местах измерений наносят тонкий слой технического вазелина, перекрывающий неровности поверхности.

Преобразователь может быть закреплен по его боковой поверхности при помощи раствора строительного гипса, технического вазелина, пластилина, штанги с пружиной и других средств, исключающих искажение теплового потока в зоне измерения.

3.5. При оперативных измерениях плотности теплового потока незакрепленную поверхность преобразователя склеивают слоем материала или закрашивают краской с той же или близкой степенью черноты с различием 0,1, что и у материала поверхностного слоя ограждающей конструкции.

3.6. Отсчетное устройство располагают на расстоянии 5-8 м от места измерения или в соседнем помещении для исключения влияния наблюдателя на значение теплового потока.

3.7. При использовании приборов для измерения э.д.с., имеющих ограничения по температуре окружающего воздуха, их располагают в помещении с температурой воздуха, допустимой для эксплуатации этих приборов, и подключение к ним преобразователя теплового потока производят при помощи удлинительных проводов.

При проведении измерений прибором ИТП-1 преобразователь теплового потока и измерительное устройство располагают в одном помещении независимо от температуры воздуха в помещении.

3.8. Аппаратуру по п.3.7 подготавливают к работе в соответствии с инструкцией по эксплуатации соответствующего прибора, в том числе учитывают необходимое время выдержки прибора для установления в нем нового температурного режима.

4.Проведение измерений

4.1. Измерение плотности теплового потока проводят:

при использовании прибора ИТП-11 - после восстановления условий теплообмена в помещении вблизи контрольных участков ограждающих конструкций, искаженных при выполнении подготовительных операций, и после восстановления непосредственно на исследуемом участке прежнего режима теплообмена, нарушенного при креплении преобразователя;

при теплотехнических испытаниях с использованием преобразователей теплового потока по п.2.2 - после наступления нового установившегося режима теплообмена под преобразователем.

После выполнения подготовительных операций по пп. 3.2-3.5 при использовании прибора ИТП-11 режим теплообмена на участке измерения восстанавливается ориентировочно через 5 - 10 мин, при использовании преобразователей теплового потока по п.2.2 - через 2-6 ч.

Показателем завершения переходного режима теплообмена и возможности проведения измерений плотности теплового потока может считаться повторяемость результатов измерения плотности тепловых потоков в пределах установленной погрешности измерения.

4.2. При измерении теплового потока в ограждающей конструкции с термическим сопротивлением менее 0,6 (кв.м )/Вт одновременно измеряют с помощью термопар температуру ее поверхности на расстоянии 100 мм от преобразователя , под ним и температуру внутреннего и наружного воздуха на расстоянии 100 мм от стены.

5. Обработка результатов

5.1. При использовании приборов ИТП-11 непосредственно по шкале прибора получают значение плотности тепловых потоков (Вт/кв.м).

5.2. При использовании отдельных преобразователей и милливольтметров для измерения э.д.с. плотность теплового потока, проходящего через преобразователь, , Вт/кв.м, рассчитывают по формуле

(1)

5.3. Определение градуировочного коэффициента преобразователя с учетом температуры испытаний производят по рекомендуемому приложению 2.

5.4. Значение плотности теплового потока , Вт/кв.м, при измерениях по п.4.3 вычисляют по формуле

(2)

где -

и -

температура наружного воздуха напротив преобразователя, К (°С);

температура поверхности на участке измерения вблизи преобразователя и под преобразователем соответственно, К (°С).

5.5. Результаты измерений записывают по форме, приведенной в рекомендуемом приложении 3.

5.6. За результат определения плотности теплового потока принимают среднее арифметическое значение результатов пяти измерений при одном положении преобразователя на ограждающей конструкции.

Приложение 1

Справочное

Технические характеристики прибора ИТП-11

Прибор ИТП-11 представляет собой совокупность преобразователя теплового потока в электрический сигнал постоянного тока с измерительным устройством, шкала которого проградуирована в единицах плотности теплового потока.

1. Пределы измерения плотности теплового потока: 0-50; 0-250 Вт/кв.м.

2. Цена деления шкалы прибора: 1; 5 Вт/кв.м.

3. Основная погрешность прибора в процентах при температуре воздуха 20 °С.

4. Дополнительная погрешность от изменения температуры воздуха, окружающего измерительное устройство, не превышает 1% на каждые 10 K (°С) изменения температуры в диапазоне от 273 до 323 K (от 0 до 50°С).

Дополнительная погрешность от изменения температуры преобразователя теплового потока не превышает 0,83% на 10 K (°С) изменения температуры в диапазоне от 273 до 243 K (от 0 до минус 30 °С).

5. Термическое сопротивление преобразователя теплового потока - не более 3·10 (кв/м· K)/Вт.

6. Время установления показаний - не более 3,5 мин.

7.Габаритные размеры футляра - 290х175х100 мм.

8. Габаритные размеры преобразователя теплового потока: диаметр 27 мм, толщина 1,85 мм.

9. Габаритные размеры измерительного устройства - 215х115х90 мм.

10 Длина соединительного электрического провода - 7 м.

11. Масса прибора без футляра - не более 2,5 кг.

12. Источник питания - 3 элемента "316".

Приложение 2

Метод градуировки преобразователя теплового потока

Изготовленный преобразователь теплового потока подвергают градуировке на установке для определения теплопроводности строительных материалов по ГОСТ 7076-78, в которой вместо испытуемого образца устанавливают градуируемый преобразователь и эталонный образец материала по ГОСТ 8.140-82.

При градуировке пространство между термостатирующей плитой установки и эталонным образцом за пределами преобразователя должно быть заполнено материалом, близким по теплофизическим свойствам к материалу преобразователя, с тем, чтобы обеспечить одномерность проходящего через него теплового потока на рабочем участке установки. Измерение э.д.с. на преобразователе и эталонном образце осуществляется одним из приборов, перечисленных в п.2.6 настоящего стандарта.

Градуировочный коэффициент преобразователя , Вт/(кв.м·мВ) при данной средней температуре опыта находят по результатам измерений плотности теплового потока и э.д.с. по следующему соотношению

Плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонном образце по формуле

где

теплопроводность материала эталона, Вт/(м.K);

температура верхней и нижней поверхностей эталона соответственно, K(°С);

толщина эталона, м.

Среднюю температуру в опытах при градуировке преобразователя рекомендуется выбирать в интервале от 243 до 323 K (от минус 30 до плюс 50 °С) и выдерживать ее с отклонением не более ±2 K (°C).

За результат определения коэффициента преобразователя принимают среднее арифметическое значение величин, вычисленных по результатам измерений не менее чем 10 опытов. Число значащих цифр в значении градуировочного коэффициента преобразователя берется в соответствии с погрешностью измерения.

Температурный коэффициент преобразователя , K (), находят по результатам измерений э.д.с. в градуировочных опытах при различных средних температурах преобразователя по соотношению

,

где ,

Средние температуры преобразователя в двух опытах, K (°С);

Градуировочные коэффициенты преобразователя при средней температуре соответственно и , Вт/(кв.м·В).

Различие между средними температурами и должно быть не менее чем 40 K (°C).

За результат определения температурного коэффициента преобразователя принимают среднее арифметическое значение плотности, вычисленное по результатам не менее чем 10 опытов с различной средней температурой преобразователя.

Значение градуировочного коэффициента преобразователя теплового потока при температуре испытаний , Вт/(кв.м·мВ), находят по следующей формуле

,

где

(Значение градуировочного коэффициента преобразователя при температуре испытаний

Вт/(кв.м·мВ)

Тип и номер измерительного прибора

Вид ог- раждаю-

Показание прибора, мВ

Значение плотности теплового потока

щей

конст-

Номер участка

Номер измерения

Среднее по участку

отсчитанное по шкале

действительное

рукции

Подпись оператора ___________________

Дата проведения измерений ___________

Текст документа сверен по:

официальное издание

Госстрой СССР -

М.: Издательство стандартов, 1988



ГОСТ 25380-2014

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЗДАНИЯ И СООРУЖЕНИЯ

Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции

Buildings and structures. Method of measuring density of heat flows passing through enclosing structures


МКС 91.040.01

Дата введения 2015-07-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением "Научно- исследовательский институт строительной физики Российской академии архитектуры и строительных наук" (НИИСФ РААСН) при участии ООО "СКБ Стройприбор"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 сентября 2014 г. N 70-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Беларусь

Госстандарт Республики Беларусь

Киргизия

Кыргызстандарт

Молдова-Стандарт

Росстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 октября 2014 г. N 1375-ст межгосударственный стандарт ГОСТ 25380-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2015 г.

5 ВЗАМЕН ГОСТ 25380-82

(Поправка. ИУС N 7-2015).

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

ВНЕСЕНА поправка, опубликованная в ИУС N 7, 2015 год

Поправка внесена изготовителем базы данных

Введение

Введение

Создание стандарта на метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции, базируется на требованиях Федерального закона N 384-ФЗ от 30 декабря 2009 г . N 384-ФЗ* "Технический регламент о безопасности зданий и сооружений", согласно которому здания и сооружения, с одной стороны, должны исключать в процессе эксплуатации нерациональный расход энергетических ресурсов, а с другой - не создавать условия для недопустимого ухудшения параметров среды обитания людей и условий производственно-технологических процессов.
_______________
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.


Настоящий стандарт разработан с целью установления единого метода измерения в лабораторных и натурных условиях плотности тепловых потоков, проходящих через ограждения отапливаемых зданий и сооружений, позволяющего количественно оценить теплотехнические качества зданий и сооружений и соответствие их ограждающих конструкций нормативным требованиям, указанным в действующих нормативных документах, определить реальные потери тепла через наружные ограждающие конструкции, проверить проектные конструктивные решения и их реализацию в построенных зданиях и сооружениях.

Стандарт является одним из базовых стандартов, обеспечивающих параметрами энергетический паспорт и энергетический аудит эксплуатируемых зданий и сооружений.

1 Область применения

Настоящий стандарт устанавливает единый метод измерения плотности тепловых потоков, проходящих через однослойные и многослойные ограждающие конструкции жилых, общественных, производственных и сельскохозяйственных зданий и сооружений при экспериментальном исследовании и в условиях их эксплуатации.

Стандарт распространяется на ограждающие конструкции отапливаемых зданий, испытываемые в условиях климатических воздействий в климатических камерах и при натурных теплотехнических исследованиях в условиях эксплуатации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.140-2009 Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерения теплопроводности твердых тел от 0,1 до 5 Вт/(м·К) в диапазоне температур от 90 до 500 К и от 5 до 20 Вт/(м·К) в диапазоне температур от 300 до 1100 К

ГОСТ 6651-2009 Термопреобразователи сопротивления. Общие технические требования и методы испытаний

ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 8711-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам

ГОСТ 9245-79 Потенциометры постоянного тока измерительные. Общие технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю "Национальные стандарты", составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 тепловой поток , Вт : Количество теплоты, проходящее через конструкцию или среду в единицу времени.

3.2 плотность теплового потока (поверхностная) , Вт/м : Величина теплового потока, проходящего через единицу площади поверхности конструкции.

3.3 сопротивление теплопередаче ограждающей конструкции , м ·°С/Вт : Сумма сопротивления тепловосприятию , термических сопротивлений слоев , сопротивления теплоотдаче ограждающей конструкции.

4 Основные нормативные положения

4.1 Сущность метода

4.1.1 Метод измерения плотности теплового потока основан на измерении перепада температуры на "дополнительной стенке" (пластинке), устанавливаемой на ограждающей конструкции здания. Этот температурный перепад, пропорциональный в направлении теплового потока его плотности, преобразуется в термоЭДС (термоэлектродвижущую силу) батареей термопар, расположенных в "дополнительной стенке" параллельно по тепловому потоку и соединенных последовательно по генерируемому сигналу. "Дополнительная стенка" (пластинка) и батарея термопар образуют преобразователь теплового потока.

4.1.2 Плотность теплового потока отсчитывается по шкале специализированного прибора ИТП-МГ 4.03 "Поток", в состав которого входит преобразователь теплового потока, или рассчитывается по результатам измерения термоЭДС на предварительно оттарированных преобразователях теплового потока.

Величина плотности теплового потока определяется по формуле

где - плотность теплового потока, Вт/м;

- коэффициент преобразования, Вт/м·мВ;

- величина термоэлектрического сигнала, мВ.

Схема измерения плотности теплового потока приведена на рисунке 1.

1 - измерительный прибор (потенциометр постоянного тока по ГОСТ 9245);

2 - подсоединение измерительного прибора к преобразователю теплового потока;

3 - преобразователь теплового потока; 4 - исследуемая ограждающая конструкция;

- плотность теплового потока, Вт/м

Рисунок 1 - Схема измерения плотности теплового потока

4.2 Аппаратура

4.2.1 Для измерения плотности тепловых потоков применяют прибор ИТП-МГ 4.03 "Поток" *.
________________
* См. раздел Библиография. - Примечание изготовителя базы данных.


Технические характеристики прибора ИТП-МГ 4.03 "Поток" приведены в приложении А.

4.2.2 При теплотехнических испытаниях ограждающих конструкций допускается проводить измерения плотности тепловых потоков при помощи отдельно изготовленных и оттарированных преобразователей теплового потока с термическим сопротивлением до 0,005-0,06 м·°С/Вт и приборов, измеряющих термоЭДС, генерируемую преобразователями.

Допускается применение преобразователя, конструкция которого приведена в ГОСТ 7076 .

4.2.3 Преобразователи теплового потока по 4.2.2 должны удовлетворять следующим основным требованиям:

материалы для "дополнительной стенки" (пластинки) должны сохранять свои физико-механические свойства при температуре окружающего воздуха от 243 до 343 К (от минус 30°С до плюс 70°С);

материалы не должны смачиваться и увлажняться водой в жидкой и парообразной фазах; отношение диаметра датчика к его толщине должно быть не менее 10;

преобразователи должны иметь охранную зону, расположенную вокруг батареи термопар, линейный размер которой должен составлять не менее 30% радиуса или половины линейного размера преобразователя;

преобразователь теплового потока должен быть оттарирован в организациях, которые в установленном порядке получили право на выпуск этих преобразователей;

в указанных выше условиях внешней среды тарировочные характеристики преобразователя должны сохраняться не менее одного года.

4.2.4 Тарировку преобразователей теплового потока по 4.2.2 допускается проводить на установке для определения теплопроводности по ГОСТ 7076 , в которой плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонных образцах материалов, аттестованных по ГОСТ 8.140 и установленных вместо испытуемых образцов. Метод тарировки преобразователя теплового потока приведен в приложении Б.

4.2.5 Проверка преобразователя производится не реже одного раза в год, как это указано в 4.2.3, 4.2.4.

4.2.6 Для измерения термоЭДС преобразователя теплового потока допускается использовать переносной потенциометр ПП-63 по ГОСТ 9245 , цифровые вольтамперметры В7-21, Ф30 по ГОСТ 8711 или другие измерители термоЭДС, расчетная погрешность которых в области измеряемых термоЭДС преобразователя теплового потока не превышает 1% и входное сопротивление которых не менее чем в 10 раз превышает внутреннее сопротивление преобразователя.

При теплотехнических испытаниях ограждающих конструкций с использованием отдельных преобразователей предпочтительно применять автоматические регистрирующие системы и приборы.

4.3 Подготовка к измерению

4.3.1 Измерение плотности тепловых потоков проводят, как правило, с внутренней стороны ограждающих конструкций зданий и сооружений.

Допускается проведение измерения плотности тепловых потоков с наружной стороны ограждающих конструкций в случае невозможности их проведения с внутренней стороны (агрессивная среда, флуктуации параметров воздуха) при условии сохранения устойчивой температуры на поверхности. Контроль условий теплообмена проводят с помощью термощупа и средств для измерения плотности теплового потока: при измерении в течение 10 мин их показания должны быть в пределах погрешности измерений приборов.

4.3.2 Участки поверхности выбирают специфические или характерные для всей испытываемой ограждающей конструкции в зависимости от необходимости измерения локальной или усредненной плотности теплового потока.

Выбранные на ограждающей конструкции участки для измерений должны иметь поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, иметь одинаковые условия по лучистому теплообмену и не должны находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

4.3.3 Участки поверхности ограждающих конструкций, на которые устанавливают преобразователь теплового потока, зачищают до устранения видимых и осязаемых на ощупь шероховатостей.

4.3.4 Преобразователь плотно прижимают по всей его поверхности к ограждающей конструкции и закрепляют в этом положении, обеспечивая постоянный контакт преобразователя теплового потока с поверхностью исследуемых участков в течение всех последующих измерений.

При креплении преобразователя между ним и ограждающей конструкцией не допускается образование воздушных зазоров. Для их исключения на участке поверхности в местах измерений наносят тонкий слой технического вазелина, перекрывающий неровности поверхности.

Преобразователь может быть закреплен по его боковой поверхности при помощи раствора строительного гипса, технического вазелина, пластилина, штанги с пружиной и других средств, исключающих искажение теплового потока в зоне измерения.

4.3.5 При оперативных измерениях плотности теплового потока на незакрепленную поверхность преобразователя наклеивают тонкий слой материала ограждения, на котором крепится преобразователь, или закрашивают краской с той же или близкой степенью черноты с различием 0,1, что и у материала поверхностного слоя ограждающей конструкции.

4.3.6 Отсчетное устройство располагают на расстоянии от 5 до 8 м от места измерения или в соседнем помещении для исключения влияния наблюдателя на значение теплового потока.

4.3.7 При использовании приборов для измерения термоЭДС, имеющих ограничения по температуре окружающего воздуха, их располагают в помещении с температурой воздуха, допустимой для эксплуатации этих приборов, и подключение к ним преобразователей теплового потока производят при помощи удлинительных проводов.

При проведении измерения прибором ИТП-МГ 4.03 "Поток" преобразователи теплового потока и измерительное устройство располагают в одном помещении независимо от температуры воздуха в помещении.

4.3.8 Аппаратуру по 4.3.7 подготавливают к работе в соответствии с инструкцией по эксплуатации соответствующего прибора, в том числе учитывают необходимое время выдержки прибора для установления в нем нового температурного режима.

4.4 Проведение измерений

4.4.1 Измерение плотности теплового потока проводят:

при использовании прибора ИТП-МГ 4.03 "Поток" после восстановления условий теплообмена в помещении вблизи контрольных участков ограждающих конструкций, искаженных при выполнении подготовительных операций, и после восстановления непосредственно на исследуемом участке прежнего режима теплообмена, нарушенного при креплении преобразователей;

при теплотехнических испытаниях с использованием преобразователей теплового потока по 4.2.2 - после наступления нового установившегося теплообмена под преобразователем.

После выполнения подготовительных операций по 4.3.2-4.3.5 при использовании прибора ИТП-МГ 4.03 "Поток" режим теплообмена на участке измерения восстанавливается ориентировочно через 5-10 мин, при использовании преобразователей теплового потока по 4.2.2 - через 2-6 ч.

Показателем завершения переходного режима теплообмена и возможности проведения измерений плотности теплового потока может считаться повторяемость результатов измерения плотности тепловых потоков в пределах установленной погрешности измерения.

4.4.2 При измерении теплового потока в ограждающей конструкции с термическим сопротивлением менее 0,6 (м·°С)/Вт одновременно измеряют с помощью термопар температуру ее поверхности на расстоянии 100 мм от преобразователя , под ним и температуру внутреннего и наружного воздуха на расстоянии 100 мм от стены.

4.5 Обработка результатов измерений

4.5.1 При использовании приборов ИТП-МГ 4.03 "Поток" значение плотности теплового потока (Вт/м) фиксируется на экране дисплея электронного блока прибора и используется для теплотехнических расчетов или заносится в архив измеренных значений для последующего использования в аналитических исследованиях.

4.5.2 При использовании отдельных преобразователей и милливольтметров для измерения термоЭДС плотность теплового потока, проходящего через преобразователь, , Вт/м, рассчитывают по формуле (1).

4.5.3 Определение коэффициента преобразования с учетом температуры испытаний производят по приложению Б.

4.5.4 Значение плотности теплового потока , Вт/м, при измерении по 4.2.2 вычисляют по формуле

где - температура наружного воздуха напротив преобразователя, °С;

и - температура поверхности на участке измерения возле преобразователя теплового потока и под ним соответственно, °С.

4.5.5 Результаты измерения по 4.5.2 записывают по форме, приведенной в приложении В.

4.5.6 За результат измерения плотности теплового потока принимают среднее арифметическое значение результатов пяти измерений при одном положении преобразователя теплового потока на ограждающей конструкции.

Приложение А (справочное). Технические характеристики прибора ИТП-МГ 4.03 "Поток"

Приложение А
(справочное)

Конструктивно измеритель плотности теплового потока и температуры ИТП-МГ 4.03 "Поток" выполнен в виде электронного блока и соединенных с ним посредством кабелей модулей, к каждому из которых, в свою очередь, подсоединены посредством кабелей 10 датчиков теплового потока и/или температуры (см. рисунок А.1).

Принцип действия, положенный в основу измерителя, заключается в измерении термоЭДС контактных термоэлектрических преобразователей теплового потока и сопротивления датчиков температуры.

Преобразователь теплового потока представляет собой гальваническую медьконстантановую термобатарею из нескольких сот последовательно соединенных термопар, сложенных бифилярно в спираль, залитую эпоксидным компаундом с различными добавками. Преобразователь теплового потока имеет два вывода (по одному от каждого конца чувствительного элемента).

Работа преобразователя основана на принципах "дополнительной стенки" (пластинки). Преобразователь закрепляется на теплообменной поверхности исследуемого объекта, образуя дополнительную стенку. Тепловой поток, проходящий через преобразователь, создает в нем градиент температур и соответствующий термоэлектрический сигнал.

В качестве выносных датчиков температуры в измерителе применяются платиновые преобразователи сопротивления по ГОСТ 6651 , обеспечивающие измерение поверхностных температур путем их крепления на исследуемые поверхности, а также температур воздуха и сыпучих сред методом погружения.

1. Предел измерения:

- плотности теплового потока: - 10-999 Вт/м;

- температуры - от минус 30°С до 100°С.

2. Пределы допускаемой основной абсолютной погрешности при измерении:

- плотности теплового потока: ±6%;

- температуры: ±0,2°С.

3. Пределы допускаемой дополнительной относительной погрешности при измерении:

- плотности теплового потока, вызванной отклонением температуры преобразователей теплового потока от 20°С: ±0,5%;

- температуры, вызванной отклонением температуры электронного блока и модулей от 20°С: ±0,05°С.

4. Термическое сопротивление преобразователей:

- плотности теплового потока не более 0,005 м·°С/Вт;

- температуры не более 0,001 м·°С/Вт.

5. Коэффициент преобразования преобразователей теплового потока не более 50 Вт/(м·мВ).

6. Габаритные размеры не более:

- электронного блока 175x90x30 мм;

- модуля 120x75x35 мм;

- датчиков температуры диаметром 12 мм и толщиной 3 мм;

- преобразователей теплового потока (прямоугольных): от пластин 10x10 мм толщиной 1 мм до пластин 100x100 мм толщиной 3 мм;

- преобразователей теплового потока (круглых) от пластин диаметром 18 мм толщиной 0,5 мм до пластин диаметром 100 мм толщиной 3 мм.

7. Масса не более:

- электронного блока 0,25 кг;

- модуля с десятью преобразователями (с кабелем длиной 5 м) 1,2 кг;

- единичного преобразователя температуры (с кабелем длиной 5 м) 0,3 кг;

- единичного преобразователя теплового потока (с кабелем длиной 5 м) 0,3 кг.

Рисунок А.1 - Схема кабельных присоединений преобразователей теплового потока и датчиков температуры измерителя ИТП-МГ 4.03 "Поток"

Приложение Б (рекомендуемое). Метод тарировки преобразователя теплового потока

Изготовленный преобразователь теплового потока подвергают тарировке на установке для определения теплопроводности строительных материалов по ГОСТ 7076 , в которой вместо испытуемого образца устанавливают тарируемый преобразователь теплового потока и эталонный образец материала по ГОСТ 8.140 .

При тарировке пространство между термостатирующей плитой установки и эталонным образцом за пределами преобразователя должно быть заполнено материалом, близким по теплофизическим свойствам к материалу преобразователя, с тем, чтобы обеспечить одномерность проходящего через него теплового потока на рабочем участке установки. Измерение термоЭДС на преобразователе и эталонном образце осуществляется одним из приборов, перечисленных в 4.2.6.

Коэффициент преобразования , Вт/(м·мВ) при данной средней температуре опыта находят по результатам измерений плотности теплового потока и термоЭДС по следующему соотношению

где - значение плотности теплового потока в опыте, Вт/м;

- вычисленное значение термоЭДС, мВ.

Плотность теплового потока рассчитывают по результатам измерения температурного перепада на эталонном образце по формуле

где - теплопроводность материала эталона, Вт/(м·°С);

, - температура верхней и нижней поверхностей эталона, соответственно, °С;

Толщина эталона, м.

Среднюю температуру в опытах при тарировке преобразователя теплового потока рекомендуется выбирать в интервале от 243 до 373 К (от минус 30°С до плюс 100°С) и выдержать ее с отклонением не более ±2°С.

За результат определения коэффициента преобразования принимают среднее арифметическое значение величин, вычисленных по результатам измерений не менее чем 10 опытов. Число значащих цифр в значении коэффициента преобразования берется в соответствии с погрешностью измерения.

Температурный коэффициент преобразователя , °С, находят по результатам измерений термоЭДС в тарировочных опытах при различных средних температурах преобразователя по соотношению

где , - средние температуры преобразователя в двух опытах, °С;

, - коэффициенты преобразования при средней температуре соответственно и , Вт/(м·мВ).

Различие между средними температурами и должно быть не менее чем 40°С.

За результат определения температурного коэффициента преобразователя принимают среднее арифметическое значение плотности, вычисленное по результатам не менее чем 10 опытов с различной средней температурой преобразователя. Значение коэффициента преобразования преобразователя теплового потока при температуре испытаний , Вт/(м·мВ), находят по следующей формуле

где - коэффициент преобразования, найденный при температуре тарировки, Вт/(м·мВ);

- температурный коэффициент изменения тарировочного коэффициента преобразователя теплового потока, °С;

- разность между температурами преобразователя при измерении и при тарировке, °С.

Приложение В (рекомендуемое). Форма записи результатов измерения тепловых потоков, проходящих через ограждающую конструкцию

Наименование объекта, на котором проводят измерения

Тип и номер преобразователя теплового потока

Коэффициент преобразования

при температуре тарировки

Температурный коэффициент преобразователя

Температуры наружного и внутреннего воздуха ,

Температуры поверхности ограждающей конструкции вблизи

преобразователя и под ним

Значение коэффициента преобразования при температуре

испытаний

Тип и номер измерительного прибора


Таблица В.1

Вид ограждающей конструкции

Номер участка

Показания прибора, мВ

Значение плотности теплового потока

Номер измерения

Среднее по участку

отсчитанное по шкале

действи-
тельное

Подпись оператора

Дата проведения измерений

Библиография

Государственный реестр средств измерений Российской Федерации*. Всероссийский научно-исследовательский институт метрологии и стандартизации. М., 2010
________________
* Документ не приводится. За дополнительной информацией обратитесь по ссылке . - Примечание изготовителя базы данных.



УДК 669.8.001.4:006.354 МКС 91.040.01

Ключевые слова: теплопередача, тепловой поток, сопротивление теплопередаче, термическое сопротивление, термоэлектрический преобразователь теплового потока, термопара
_________________________________________________________________________________________

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2015

Количество тепла, проходящее через данную поверхность в единицу времени, называется тепловым потоком Q , Вт .

Количество тепла, через единицу поверхности в единицу времени, называется плотностью теплового потока или удельным тепловым потоком и характеризует интенсивность теплообмена.

Плотность теплового потока q , направлена по нормали к изотермической поверхности в сторону, обратную градиенту температуры, т. е. в сторону уменьшения температуры.

Если известно распределение q по поверхности F , то полное количество тепла Q τ , прошедшее через эту поверхность за время τ , найдется по уравнению:

а тепловой поток:

Если величина q постоянна по рассматриваемой поверхности, то:

Закон Фурье

Этот закон устанавливает величину теплового потока при переносе тепла посредством теплопроводности. Французский ученый Ж. Б. Фурье в 1807 году установил, что плотность теплового потока через изотермическую поверхность пропорциональна градиенту температуры:

Знак минус в (9.6) указывает, что тепловой поток направлен в сторону, обратную градиенту температуры (см. рис. 9.1.).

Плотность теплового потока в произвольном направлении l представляет проекцию на это направление теплового потока в направлении нормали:

Коэффициент теплопроводности

Коэффициент λ , Вт/(м·К), в уравнении закона Фурье численно равен плотности теплового потока при падении температуры на один Кельвин (градус) на единицу длины. Коэффициент теплопроводности различных веществ зависит от их физических свойств. Для определённого тела величина коэффициента теплопроводности зависит от структуры тела, его объёмного веса, влажности, химического состава, давления, температуры. В технических расчётах величину λ берут из справочных таблиц, причём надо следить за тем, чтобы условия, для которых приведено в таблице значение коэффициента теплопроводности, соответствовали условиям рассчитываемой задачи.

Особенно сильно зависит коэффициент теплопроводности от температуры. Для большинства материалов, как показывает опыт, эта зависимость может быть выражена линейной формулой:

где λ o - коэффициент теплопроводности при 0 °С;

β - температурный коэффициент.

Коэффициент теплопроводности газов , а в особенности паров сильно зависит от давления. Численное значение коэффициента теплопроводности для различных веществ меняется в очень широких пределах - от 425 Вт/(м·К) у серебра, до величин порядка 0,01 Вт/(м·К) у газов. Это объясняется тем, что механизм передачи теплоты теплопроводностью в различных физических средах различен.


Металлы имеют наибольшее значение коэффициента теплопроводности. Теплопроводность металлов уменьшается с ростом температуры и резко снижается при наличии в них примесей и легирующих элементов. Так, теплопроводность чистой меди равна 390 Вт/(м·К), а меди со следами мышьяка - 140 Вт/(м·К). Теплопроводность чистого железа 70 Вт/(м·К), стали с 0,5 % углерода - 50 Вт/(м·К), легированной стали с 18 % хрома и 9 % никеля - только 16 Вт/(м·К).

Зависимость теплопроводности некоторых металлов от температуры показана на рис. 9.2.

Газы имеют невысокую теплопроводность (порядка 0,01...1 Вт/(м·К)), которая сильно возрастает с ростом температуры.

Теплопроводность жидкостей ухудшается с ростом температуры. Исключение составляют вода и глицерин . Вообще коэффициент теплопроводности капельных жидкостей (вода, масло, глицерин) выше, чем у газов, но ниже, чем у твердых тел и лежит в пределах от 0,1 до 0,7 Вт/(м·К).

Рис. 9.2. Влияние температуры на коэффициент теплопроводности металлов

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

МОСТЫ И ТРУБЫ.
ПРАВИЛА ОБСЛЕДОВАНИЙ
И ИСПЫТАНИЙ

СНиП 3.06.07-86

ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ КОМИТЕТ СССР

Москва 1987

РАЗРАБОТАНЫ Союздорнии Минтрансстроя (инженеры В.В. Васильев - руководитель темы, П.В. Рутгарс, Е.А. Теняев, И.Л. Кацман ) и ЦНИИС Минтрансстроя (кандидаты техн.наук В.П. Польевко - руководитель темы, И.И. Казей, П.М.Зелевич; инж. В.П. Бойчун ) с участием НИИмостов ЛИИЖТ МПС, Гипродорнии Минавтодора РСФСР и Гипрокоммундортранса Минжилкомхоза РСФСР.

ВНЕСЕНЫ Минтрансстроем.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Управлением стандартизации и технических норм в строительстве Госстроя СССР (В.И. Чуев, М.М. Борисова ).

С введением в действие СНиП 3.06.07-86 «Мосты и трубы. Правила обследований и испытаний» с 1 июля 1987 г. «Инструкция по обследованию и испытаниям мостов и труб» (ВСН 122-65), утвержденная Минтрансстроем, МПС, Минавтодором РСФСР и Минкомхозом РСФСР, не применяется.

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники», «Сборнике изменений к строительным нормам и правилам» Госстроя СССР и информационном указателе «Государственные стандарты СССР» Госстандарта СССР.

Настоящие нормы и правила распространяются на обследования, статические и динамические испытания и обкатку мостов (путепроводов, виадуков, эстакад) и труб под насыпями, запроектированных под подвижные временные нагрузки и расположенных на железных дорогах, линиях метрополитена и трамвая, автомобильных дорогах (включая дороги промышленных предприятий, а также внутрихозяйственные дороги в колхозах, совхозах и других сельскохозяйственных предприятиях и организациях), на улицах и дорогах городов, поселков и сельских населенных пунктов. Нормы и правила распространяются на обследования и испытания, выполняемые после завершения строительства (при приемке сооружений в постоянную или временную эксплуатацию), после реконструкции (усиления) и могут использоваться при обследованиях и испытаниях сооружений, находящихся в эксплуатации, а также при обследованиях мостов, запроектированных под особые виды нагрузок (от трубопроводов, каналов и др.).

Нормы и правила не распространяются:

на неполные обследования, проводимые проектными, научно-исследовательскими и другими организациями для получения ограниченных данных;

на исследовательские испытания, проводимые до разрушения конструкций;

на контрольные обследования и испытания конструкций, узлов и деталей, выполняемые при их изготовлении и монтаже.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Обследования и испытания мостов и труб проводятся для выявления состояния и изучения работы этих сооружений.

Обследования мостов и труб могут проводиться как самостоятельный вид работ (без проведения испытаний).

Испытания и обкатку сооружений допускается проводить только после выполнения обследований (см. ) и с учетом полученных по ним данных.

2. Изъятие образцов материалов может проводиться только из второстепенных и ненапряженных частей и элементов сооружения. Места в конструкции, где изъяты образцы, должны быть заделаны (перекрыты), а при необходимости - усилены.

2.4. При обследовании мостов и труб следует применять систему обозначений и счета элементов сооружения, принятую в технической документации. Эта система должна использоваться как в полевых, так и в отчетных документах по обследованию.

2.5. При обследовании мостов и труб должны быть отмечены и оценены по их значимости неисправности (недоделки, дефекты, повреждения), обнаруженные в сооружениях.

Характерные дефекты и повреждения, встречающиеся в различных конструкциях мостов и труб, с указанием наиболее вероятных причин их происхождения приведены в рекомендуемом .

ОЗНАКОМЛЕНИЕ С ТЕХНИЧЕСКОЙ ДОКУМЕНТАЦИЕЙ

2.6. При выполнении обследований и испытаний степень подробности рассмотрения технической документации применительно к конкретным объектам определяется руководителем работ мостостанции исходя из задач, поставленных в программе работ.

Предоставление необходимой технической документации для ознакомления осуществляется при обследованиях и испытаниях:

сооружений, законченных строительством, - генподрядчиком строительства или по его поручению строительной организацией, выполнявшей строительство;

эксплуатируемых сооружений - организацией, в ведении которой находится сооружение.

2.7. При ознакомлении с технической документацией законченных строительством сооружений, как правило, следует обращать внимание:

на правильность оформления отступлений от утвержденного проекта и действующих нормативных документов;

на соответствие физических, механических и химических характеристик примененных строительных материалов требованиям проекта и нормативных документов;

на наличие и качество оформления промежуточной приемки отдельных конструкций (например, балок сборных пролетных строений, блоков опор и др.), а также выполненных на месте ответственных скрытых работ.

2.8. Ознакомление с технической документацией эксплуатируемых мостов и труб включает также изучение материалов и данных ранее проверенных обследований и испытаний. При этом следует выявить, в какой степени выполнены выданные ранее рекомендации по поддержанию сооружения в исправном состоянии.

Кроме того, должны быть изучены материалы, касающиеся выполнения работ по текущему содержанию (в том числе выявлению неисправностей), ремонтам, длительным наблюдениям.

ОСМОТР СООРУЖЕНИЙ

2.9. При осмотре сооружения основное внимание следует уделять выявлению вего частях и элементах неисправностей (например, трещин, сколов, погнутостей и выпучиваний, расстройств в стыковых соединениях и прикреплениях элементов» коррозионных повреждений, разрушений откосов конусов, струенаправляющих и берегоукрепительных дамб, повреждений водоотвода, гидроизоляции, деформационных швов, уравнительных приборов и других элементов мостового полотна или верхнего строения пути). Необходимо также отмечать в конструкциях места, где вследствие неизбежного скопления грязи, воды, снега, льда возможно интенсивное развитие различных неблагоприятных явлений (коррозионных процессов, гниения древесины, размораживания и др.).

2.10. При осмотре мостов и труб, расположенных в районах распространения вечной мерзлоты, а также в селеопасных и сейсмически опасных районах необходимо обращать внимание на состояние и работу имеющихся защитных устройств и конструкций.

2.11. Обнаруженные неисправности должны быть с необходимой полнотой описаны в материалах обследований с указанием времени выявления и возможных причин появления.

Наиболее опасные, а также характерные повреждения и дефекты должны быть отражены в эскизах или сфотографированы.

КОНТРОЛЬНЫЕ ИЗМЕРЕНИЯ И ИНСТРУМЕНТАЛЬНЫЕ СЪЕМКИ

2.12. Контрольные проверки генеральных размеров сооружения и размеров поперечных селений, стыков и прикреплений проводятся для оценки соответствия фактических геометрических характеристик сооружения (с учетом установленных допусков) характеристикам, указанным в проектной, исполнительной или эксплуатационной технической документации.

Вид и необходимый объем проводимых контрольных промеров определяются руководителем работ мостостанции после ознакомления с технической документацией и осмотра сооружения.

(СТ СЭВ 2859-81)

ПРИЛОЖЕНИЕ 3

Текст документа

Строительные нормы и правила
СНиП 3.06.07-86
"Мосты и трубы. Правила обследований и испытаний"
(утв. постановлением Госстроя СССР от 31 декабря 1986 г. N 77)

выполнении работ по обследованию и испытаниям мостов и

труб (обязательное)

требованиями которых следует руководствоваться при

контроле качества материалов (справочное)

различных конструкциях мостов и труб, и способы их

повреждений, выявленных при обследовании

правил, ведомственных нормативных документов, которыми

следует пользоваться при выполнении работ по обследованию

и испытаниям мостов и труб (справочное)

Настоящие нормы и правила распространяются на обследования, статические и динамические испытания и обкатку мостов (путепроводов, виадуков, эстакад) и труб под насыпями, запроектированных под подвижные временные нагрузки и расположенных на железных дорогах, линиях метрополитена и трамвая, автомобильных дорогах (включая дороги промышленных предприятий, а также внутрихозяйственные дороги в колхозах, совхозах и других сельскохозяйственных предприятиях и организациях), на улицах и дорогах городов, поселков и сельских населенных пунктов. Нормы и правила распространяются на обследования и испытания, выполняемые после завершения строительства (при приемке сооружений в постоянную или временную эксплуатацию), после реконструкции (усиления) и могут использоваться при обследованиях и испытаниях сооружений, находящихся в эксплуатации, а также при обследованиях мостов, запроектированных под особые виды нагрузок (от трубопроводов, каналов и др.).

Нормы и правила не распространяются:

на неполные обследования, проводимые проектными, научно-исследовательскими и другими организациями для получения ограниченных данных;

на исследовательские испытания, проводимые до разрушения конструкций;

на контрольные обследования и испытания конструкций, узлов и деталей, выполняемые при их изготовлении и монтаже.

При выполнении работ по обследованию законченных строительством и реконструированных мостов и труб необходимо руководствоваться также требованиями СНиП III-43-75 и СНиП 2.05.03-84.

Примечания: 1. При проведении контроля качества материалов неразрушающими методами, а также при изъятии образцов материалов для лабораторных исследований необходимо руководствоваться требованиями и указаниями действующих государственных стандартов, приведенных в справочном

2. Изъятие образцов материалов может проводиться только из второстепенных и ненапряженных частей и элементов сооружения. Места в конструкции, где изъяты образцы, должны быть заделаны (перекрыты), а при необходимости - усилены.

2.4. При обследовании мостов и труб следует применять систему обозначений и счета элементов сооружения, принятую в технической документации. Эта система должна использоваться как в полевых, так и в отчетных документах по обследованию.

2.5. При обследовании мостов и труб должны быть отмечены и оценены по их значимости неисправности (недоделки, дефекты, повреждения), обнаруженные в сооружениях.

Характерные дефекты и повреждения, встречающиеся в различных конструкциях мостов и труб, с указанием наиболее вероятных причин их происхождения приведены в рекомендуемом

3.12. Первое загружение конструкции испытательной нагрузкой следует проводить постепенно, с контролем за ее работой на разных этапах по показаниям отдельных измерительных приборов.

3.13. Время выдержки испытательной нагрузки в каждом из предусмотренных положений следует определять по стабилизации показаний измерительных приборов: приращения наблюдаемых деформаций за 5 мин не должны превышать 5%.

С целью увеличения точности показаний приборов время загружения и разгружения конструкций, а также время взятия отсчетов по приборам должно быть по возможности наименьшим.

При необходимости достижения наибольших деформаций конструкции под нагрузкой время выдержки должно назначаться в зависимости от наблюдаемого прироста деформаций, материала сооружения, вида и состояния стыковых соединений, предшествовавших загружений.

Определение остаточных деформаций конструкции следует производить по результатам первого ее загружения испытательной нагрузкой.

3.14. Загружения конструкций испытательной нагрузкой следует, как правило, повторять. Количество необходимых повторных загружений определяет руководитель работ мостостанции по результатам первых загружений.

3.15. В процессе статических испытаний следует измерять:

общие перемещения и деформации сооружения и его частей;

напряжения (относительные деформации) в сечениях элементов;

местные деформации (раскрытие трещин и швов, смещения в соединениях и т.п.).

Кроме того, в зависимости от вида конструкций и их состояния и в соответствии с задачами испытаний могут производиться измерения угловых деформаций, взаимных перемещений частей сооружения, усилий в элементах (вантах, шпренгелях) и т.п.

3.16. Места установки измерительных приборов следует назначать исходя из необходимости получения в результате испытаний достаточно полных представлений о работе конструкции под временными вертикальными нагрузками.

Для измерения перемещений и деформаций следует выбирать элементы и части конструкций, наиболее интенсивно работающие под воздействием нагрузки, а также элементы и соединения, нуждающиеся в проверке по результатам обследования или по иным данным.

3.21. При испытаниях автодорожных и городских мостов в необходимых случаях (например, для выявления динамических характеристик сооружения, для оценки влияния неровностей, возможных на проезжей части, и др.) динамическое воздействие подвижной нагрузки может усиливаться применением специальных мер - проездом автомобилей по искусственно созданным неровностям (порожкам).

Возмущающие динамические силы в виде периодически повторяющихся импульсов могут быть созданы посредством проезда двухосного автомобиля по порожкам (доскам, уложенным поперек проезда), удаленным один от другого на расстояния, равные колесной базе автомобиля.

3.22. При динамических испытаниях сооружения временной подвижной нагрузкой заезды следует выполнять с различными скоростями, что позволяет выявить характер работы сооружения в диапазоне возможных скоростей движения нагрузки.

Скорости движения нагрузки во время заездов, а также количество заездов с той или иной скоростью в каждом конкретном случае устанавливаются руководителем работ мостостанции. Рекомендуется выполнять при разных скоростях не менее 10 заездов и повторять отдельные заезды, при которых наблюдается повышенное динамическое воздействие нагрузки.

3.23. Во время динамических испытаний с помощью самопишущих приборов должны быть зарегистрированы общие перемещения сооружения (например, прогибы в середине пролета, смещения концов пролетного строения на подвижных опорных частях), а также в необходимых случаях перемещения и деформации (напряжения) в отдельных элементах сооружения.

4.5. По материалам проведенных обследований и испытаний, а также по результатам оценки расчетной грузоподъемности сооружения в каждом случае должны разрабатываться меры по обеспечению нормальной и безопасной эксплуатации сооружения.

В зависимости от характера, значимости и распространения обнаруженных дефектов и повреждений могут предусматриваться проведение различных видов ремонтных работ, усиление отдельных элементов, введение ограничений для обращающихся нагрузок (в том числе уменьшение количества рядов или увеличение интервалов между транспортными единицами на автодорожных и городских мостах), ограничение скорости движения транспортных средств и др.

Заключения по результатам обследований и испытаний вновь построенных или реконструированных сооружений составляются мостостанциями при необходимости передачи полученных данных приемочным комиссиям в сжатые сроки. Кроме того, заключения могут составляться мостостанциями по результатам работ локального характера (например, по обследованиям и испытаниям одного или нескольких отдельных элементов сооружения).

Отчеты о проведенных обследованиях и испытаниях с выводами и предложениями составляются мостостанциями после полной обработки и анализа всех полученных материалов и данных.

5.2. Документы по результатам обследований и испытаний должны содержать:

а) акты и заключения:

краткое описание объекта обследования и испытаний;

перечень выполненных работ;

основные результаты работ и их краткий анализ;

выводы о возможности пропуска нагрузок по сооружению;

б) отчеты:

описание конструкций сооружения и необходимые сведения из проектной и другой технической документации по сооружению, использованные для обоснования выводов мостостанции;

краткое описание технологии строительства с указанием имеющихся отступлений, а также дефектов, возникших на стадии строительства;

результаты контрольных измерений и инструментальных съемок;

результаты осмотра сооружения с указанием состояния отдельных его частей и описанием обнаруженных дефектов и повреждений; при большом количестве дефектов и повреждений составляется их ведомость;

результаты испытаний моста (включая сравнение опытных данных с данными, полученными расчетным путем);

выводы о состоянии сооружения и о соответствии его работы расчетным предпосылкам;

условия дальнейшей эксплуатации сооружения.

При необходимости проведения повторных обследований и испытаний (в том числе для изучения работы сооружения по истечении некоторого срока эксплуатации) или длительных наблюдений в выводах следует делать соответствующие предложения.

5.3. В отчет необходимо включать чертежи, схемы, фотографии и другие иллюстрационные материалы. Вспомогательные материалы, расчетные таблицы и т.п. следует приводить в приложениях.

В приложениях к отчету рекомендуется также помещать: программу испытаний, выписки из проектной, строительной и эксплуатационной документации, результаты поверочных расчетов, акты и материалы по работам, выполненным с привлечением специализированных организаций, и др.

──────────────────────────────

Обязательное

Правила охраны труда и техники безопасности
при выполнении работ по обследованию и
испытаниям мостов и труб

1. К выполнению работ по обследованию и испытаниям мостов и труб допускаются работники, прошедшие обучение и проверку знаний, инструктажи по охране труда в соответствии с требованиями СНиП III-4-80 (разд.1) и ГОСТ 12.0.004-79.

Справочное

Перечень основных государственных стандартов,
требованиями которых следует руководствоваться при
контроле качества материалов

Характерные дефекты и повреждения, встречающиеся в
различных конструкциях мостов и труб, и способы их выявления

Справочное

Перечень государственных стандартов, строительных норм и правил,
ведомственных нормативных документов, которыми следует пользоваться
при выполнении работ по обследованию и испытаниям мостов и труб

ГОСТ 23457-79. Технические средства организации дорожного движения. Правила применения.

ГОСТ 10807-78. Знаки дорожные. Общие технические условия.

ГОСТ 13508-74. Разметка дорожная.

СНиП 2.05.03-84. Мосты и трубы.

СНиП III-43-75. Мосты и трубы. Правила производства и приемки работ. Инструкция по содержанию искусственных сооружений (ЦП/4363), утвержденная Главным управлением пути и сооружений МПС в 1986 г.

См. СНиП 3.06.04-91. "Мосты и трубы", утвержденный постановлением Госстроя СССР от 28 ноября 1991 г. N17

Технические правила ремонта и содержания автомобильных дорог (ВСН 24-75), утвержденные Минавтодором РСФСР в 1975 г.

Взамен ВСН 24-75 действуют ВСН 24-88, утвержденные Минавтодором РСФСР 29 июня 1988 г.

Инструкция по проведению осмотров мостов и труб на автомобильных дорогах (ВСН 4-81), утвержденная Минавтодором РСФСР в 1981 г.

Руководство по определению грузоподъемности металлических пролетных строений железнодорожных мостов, утвержденное Главным управлением пути и сооружений МПС в 1985 г.

Руководство по определению грузоподъемности железобетонных пролетных строений железнодорожных мостов, утвержденное Главным управлением пути и сооружений МПС в 1974 г.

Инструкция по определению грузоподъемности железобетонных балочных пролетных строений автодорожных мостов (ВСН 32-78), утвержденная Минавтодором РСФСР в 1978 г.

Указания по организации и обеспечению безопасности движения на автомобильных дорогах (ВСН 25-76) , утвержденные Минавтодором РСФСР в 1976 г.

Указания по гидрологическим наблюдениям на мостовых переходах, утвержденные Главным управлением пути и сооружений МПС в 1979 г.

Правила дорожного движения, утвержденные МВД СССР в 1986 г.

В настоящее время действуют Правила дорожного движения Российской Федерации, утвержденные постановлением СМ РФ от 23 октября 1993 г. N 1090