Мой бизнес - Франшизы. Рейтинги. Истории успеха. Идеи. Работа и образование
Поиск по сайту

Современные средства и методики диагностики оборудования горнодобывающей и горноперерабатывающей отрасли согласно концепции «Надежное оборудование». Методы и средства технической диагностики Техническая диагностика оборудования коммуникаций технологически

Техническая диагностика - область знаний, охватывающая теорию, методы и средства определения технического состояния объекта. Назначение технической диагностики в обшей системе технического обслуживания - снижение объема затрат на стадии эксплуатации за счет проведения целевого ремонта.

Техническое диагностирование - процесс определения технического состояния объекта. Оно подразделяется на тестовое, функциональное и экспресс-диагностирование.

Периодическое и плановое техническое диагностирование позволяет:

    выполнять входной контроль агрегатов и запасных узлов при их покупке;

    свести к минимуму внезапные внеплановые остановки технического оборудования;

    управлять старением оборудования.

Комплексное диагностирование технического состояния оборудования дает возможность решать следующие задачи:

    проводить ремонт по фактическому состоянию;

    увеличить среднее время между ремонтами;

    уменьшить расход деталей в процессе эксплуатации различного оборудования;

    уменьшить объем запасных частей;

    сократить продолжительность ремонтов;

    повысить качество ремонта и устранить вторичные поломки;

    продлить ресурс работающего оборудования на строгой научной основе;

    повысить безопасность эксплуатации энергетического оборудования:

    уменьшить потребление ТЭР.


Тестовое техническое диагностирование - это диагностирование, при котором на объект подаются тестовые воздействия (например, определение степени износа изоляции электрических машин по изменению тангенса угла диэлектрических потерь при подаче напряжения па обмотку двигателя от моста переменного тока).

Функциональное техническое диагностирование - это диагностирование, при котором измеряются и анализируются параметры объекта при его функционировании но прямому назначению или в специальном режиме, например определение технического состояния подшипников качения по изменению вибрации во время работы электрических машин.

Экспресс-диагностирование - это диагностирование по ограниченному количеству параметров за заранее установленное время.

Объект технического диагностирования - изделие или его составные части, подлежащие (подвергаемые) диагностированию (контролю).

Техническое состояние - это состояние, которое характеризуется в определенный момент времени при определенных условиях внешней среды значениями диагностических параметров, установленных технической документацией на объект.

Средства технического диагностирования - аппаратура и программы, с помощью которых осуществляется диагностирование (контроль).

Встроенные средства технического диагностирования - это средства диагностирования, являющиеся составной частью объекта (например, газовые реле в трансформаторах на напряжение 100 кВ).

Внешние устройства технического диагностирования - это устройства диагностирования, выполненные конструктивно отдельно от объекта (например, система виброконтроля на нефтеперекачивающих насосах).

Система технического диагностирования - совокупность средств, объекта и исполнителей, необходимая для проведения диагностирования по правилам, установленным технической документацией.

Технический диагноз - результат диагностирования.

Прогнозирование технического состояния это определение технического состояния объекта с заданной вероятностью на предстоящий интервал времени, в течение которого сохранится работоспособное (неработоспособное) состояние объекта.

Алгоритм технического диагностирования - совокупность предписаний, определяющих последовательность действий при проведении диагностирования.

Диагностическая модель - формальное описание объекта, необходимое для решения задач диагностирования. Диагностическая модель может быть представлена в виде совокупности графиков, таблиц или эталонов в диагностическом пространстве.


Существуют различные методы технического диагностирования:

Реализуется с помощью лупы, эндоскопа, и других простейших приспособлений. Этим методом пользуются, как правило, постоянно, проводя внешние осмотры оборудования при подготовки его к работе или в процессе технических осмотров.

Виброакустический метод реализуется с помощью различных приборов для измерения вибрации. Вибрация оценивается по виброперемещению, виброскорости или виброускорению. Оценка технического состояния этим методом осуществляется по общему уровню вибрации в диапазоне частот 10 - 1000 Гц или по частотному анализу в диапазоне 0 - 20000 Гц.


Реализуется с помощью . Пирометрами измеряется температура бесконтактным способом в каждой конкретной точке, т.е. для получения информации о температурном ноле необходимо этим прибором сканировать объект. Тепловизоры позволяют определять температурное поле в определенной части поверхности диагностируемого объекта, что повышает эффективность выявления зарождающихся дефектов.


Метод акустической эмиссии основан на регистрации высокочастотных сигналов в металлах и керамике при возникновении микротрещин. Частота акустического сигнала изменяется в диапазоне 5 - 600 кГц. Сигнал возникает в момент образования микротрещин. По окончании развития трещины он исчезает. Вследствие этого при использовании данного метода применяют различные способы нагружения объектов в процессе диагностирования.

Магнитный метод используется для выявления дефектов: микротрещин, коррозии и обрывов стальных проволок в канатах, концентрации напряжения в металлоконструкциях. Концентрация напряжения выявляется с помощью специальных приборов, в основе работы которых лежат принципы Баркгаузсна и Виллари.

Метод частичных разрядов применяется для выявления дефектов в изоляции высоковольтного оборудования (трансформаторы, электрические машины). Физические основы частичных разрядов состоят в том, что в изоляции электрооборудования образуются локальные заряды различной полярности. При разнополярных зарядах возникает искра (разряд). Частота этих разрядов изменяется в диапазоне 5 - 600 кГц, они имеют различную мощность и длительность.

Существуют различные методы регистрации частичных разрядов:

    метод потенциалов (зонд частичных разрядов Lemke-5);

    акустический (применяются высокочастотные датчики);

    электромагнитный (зонд частичных разрядов);

    емкостный.

Для выявления дефектов в изоляции станционных синхронных генераторов с водородным охлаждением и дефектов в трансформаторах на напряжение 3 - 330 кВ применяется хромотографический анализ газов . При возникновении различных дефектов в трансформаторах в масле выделяются различные газы: метан, ацетилен, водород и т.д. Доля этих растворенных в масле газов чрезвычайно мала, но тем не менее имеются приборы (хромотографы), с помощью которых указанные газы выявляются в трансформаторном масле и определяется степень развития тех или других дефектов.

Для измерения тангенса угла диэлектрических потерь в изоляции в высоковольтном электрооборудовании (трансформаторы, кабели, электрические машины) применяется специальный прибор - . Этот параметр измеряется при подаче напряжения от номинального до 1,25 номинального. При хорошем техническом состоянии изоляции тангенс угла диэлектрических потерь не должен изменяться в этом диапазоне напряжения.


Графики изменения тангенса угла диэлектрических потерь: 1 - неудовлетворительное; 2 - удовлетворительное; 3 - хорошее техническое состояние изоляции

Кроме того, для технического диагностирования валов электрических машин, корпусов трансформаторов могут использоваться следующие методы: ультразвуковой, ультразвуковая толщинометрия, радиографический, капиллярный (цветной), вихретоковый, механические испытания (твердометрия, растяжение, изгиб), рентгенографическая дефектоскопия, металлографический анализ.

Грунтович Н. В.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

1. Диагностика - основа обслуживания машин по их фактическому техническому состоянию

Одной из наиболее важных и актуальных проблем современности является повышение качества и надежности механизмов, машин и оборудования в любой отрасли промышленности. Это вызвано постоянным ростом энерговооруженности современных предприятий, заводов, комбинатов, тепловых и атомных станций, морского, воздушного, железнодорожного и других видов транспорта и т.д., оснащением их сложной техникой, внедрением автоматизированных систем обслуживания и управления.

Известны традиционные пути увеличения надежности и ресурса, такие как оптимизация систем, совершенствование конструкции и технологии изготовления отдельных элементов, резервирование механизмов, машин и оборудования, увеличение коэффициента запаса (работа не на полную мощность, не на номинальном режиме и т.п.).

Эти пути наиболее эффективны для систем ограниченной мощности, таких как информационные системы, системы автоматического управления и связи и т.п. Перспективы указанных направлений связаны, в первую очередь, с высокими темпами развития элементной базы подобных систем, ее миниатюризацией и высокой степенью интеграции.

Однако во многих областях промышленности конструкция и технология изготовления отдельных узлов механизмов, машин, оборудования претерпели в течение последних десятилетий незначительные изменения, которые не привели к существенному повышению их надежности и ресурса. В то же время высокая степень резервации механизмов и введение коэффициентов запаса часто невозможны из-за ограничений по массе и габаритам. Поэтому потребовалось изыскание новых путей для решения проблемы повышения надежности и ресурса.

До недавнего времени машины и оборудование, в том числе и на промышленных предприятиях, либо эксплуатировались до выхода их из строя, либо обслуживались по регламенту, т.е. осуществлялось планово-профилактическое техническое обслуживание.

В первом случае эксплуатация оборудования до выхода из строя возможна при использовании недорогих машин и при дублировании важных участков технологического процесса.

Более широкое распространение в настоящее время получило обслуживание по регламенту, т.е. планово-профилактическое техническое обслуживание, что обусловлено невозможностью или нецелесообразностью дублирования и большими потерями при непредусмотренных остановках машин или оборудования. этом случае техническое обслуживание проводится с фиксированными интервалами времени.

Эти интервалы часто определяются статистически как период с момента начала работы нового или прошедшего полное техническое обслуживание исправного машинного оборудования до момента, когда ожидается, что не более 2% машинного парка выйдет из строя. Но оказывается, что для многих машин обслуживание и ремонт по регламенту не снижает частоту выхода их из строя.

Более того, надежность работы машин и оборудования после технического обслуживания часто снижается иногда временно до момента их приработки, а иногда это снижение надежности обусловлено появлением ранее отсутствующих дефектов монтажа.

Очевидно, что увеличение эффективности, надежности и ресурса, а также обеспечение безопасной эксплуатации машин и механизмов тесно связано с необходимостью оценки их технического состояния. Это и определило формирование нового научного направления - технической диагностики, которое получило особо широкое развитие в последние десятилетия.

Техническая диагностика - это область науки и техники, изучающая и разрабатывающая методы и средства определения и прогнозирования технического состояния механизмов, машин и оборудования без их разборки.

Следует отметить, что техническое состояние механизмов, машин и оборудования в определенной степени оценивали и раньше. Это были измерительные приборы, системы контроля. Однако ограниченная информация о машинах и механизмах далеко не всегда позволяла выявить причины их отказов и, тем более, обнаружить дефект в объекте, который непосредственно не сказывался на его функционировании, но повышал вероятность отказа и, следовательно, снижал надежность и ресурс таких машин и механизмов.

В существующих системах управления, регулирования, контроля и диагностики эксплуатируемого оборудования основной особенностью является то, что операции контроля и защиты обычно автоматизированы, а решение задач диагностики до недавнего времени возлагалось на оператора или ремонтную бригаду.

В этом случае решение задач диагностики усложнялось по следующим причинам: большой объем обрабатываемой информации, необходимость логического анализа сложных взаимосвязанных процессов, быстротечность рабочих процессов, опасность запоздалой или ошибочной оценки технического состояния.

Создание автоматизированных средств диагностики вывело техническую диагностику на еще более высокую ступень. В настоящее время успехи развития таких областей науки, как теории распознавания и контролеспособности, которые являются составной частью технической диагностики, создали предпосылки, для того чтобы создание и совершенствование методов и средств технической диагностики, в особенности автоматизированных, стали наиболее эффективным путем увеличения надежности и ресурса машин и оборудования.

Использование методов и средств технической диагностики позволяет значительно уменьшить трудоемкость и время ремонта и таким образом снизить эксплуатационные расходы. Следует отметить, что эксплуатационные расходы превышают расходы изготовления в несколько раз. Это превышение составляет, например, для самолетов в 5 раз, для автотранспорта в 7 раз, для станков в 8 раз и более.

Если учесть, что за время эксплуатации механизм подвергается нескольким десяткам профилактических осмотров с частичной разборкой, до 10 вынужденных и плановых средних ремонтов и до 3 капитальных ремонтов, можно оценить, какой экономический эффект будет получен за счет внедрения средств технической диагностики.

По данным международной конфедерации по измерительной технике и приборостроению IМЕСО, только за счет внедрения средств диагностики, например для энергетических установок, сокращаются трудоемкость и время ремонта более чем на 40%, уменьшается расход топлива на 4% и увеличивается коэффициент технического использования оборудования на 12%.

Значительный экономический эффект достигается при переходе с обслуживания и ремонта по регламенту на ремонт и обслуживание по фактическому состоянию. Так, обслуживание роторных машин одного из химических комбинатов по техническому состоянию позволило снизить общее число проводимых техобслуживаний и ремонтов с 274 до 14.

На нефтеперерабатывающем комбинате затраты на проведение технического обслуживания электродвигателей снизилось на 75%. На бумажной фабрике экономия в течение первого года составила не менее $250000, что в десять раз перекрыло расходы предприятия на закупку аппаратуры для мониторинга механических колебаний.

На атомной электростанции в течение одного года были достигнуты экономия в $3 миллиона США за счет снижения затрат на проведение технического обслуживания и дополнительное увеличение доходов в размере $19 миллионов США за счет сокращения простоев.

Эти данные получены фирмой "Брюль и Къер" при внедрении систем мониторинга состояния машинного оборудования. Следует отметить, что самые современные средства технической диагностики, особенно автоматизированные, представляют собой новое поколение еще более эффективных систем, не требующих специальной подготовки обслуживающего персонала, что позволяет получить гораздо больший экономический эффект.

Повышенное внимание, уделяемое средствам технической диагностики специалистами по изготовлению и эксплуатации машин, механизмов и оборудования во многих отраслях промышленности, объясняется тем, что внедрение таких средств позволяет:

предупреждать аварии,

повышать безотказность машин и оборудования,

увеличивать их долговечность, надежность и ресурс,

повышать производительность и объем производства,

прогнозировать остаточный ресурс,

снижать затраты времени на ремонтные работы,

сокращать эксплуатационные затраты,

уменьшать количество обслуживающего персонала,

оптимизировать количество запасных деталей,

снижать затраты на страхование.

Таким образом, безопасная эксплуатация, повышение надежности и значительное увеличение ресурса машин, механизмов и оборудования невозможны в настоящее время без широкого применения методов и средств технической диагностики. Внедрение средств технической диагностики позволяет отказаться от обслуживания и ремонта по регламенту и перейти к прогрессивному принципу обслуживания и ремонта по фактическому состоянию, что дает значительный экономический эффект.

В развитии средств оценки технического состояния машин и оборудования можно выделить 4 основных этапа:

контроль измеряемых параметров,|

мониторинг контролируемых параметров,

диагностика машин и оборудования,

прогноз изменения их технического состояния.

При контроле машин и оборудования достаточно информации о величинах измеряемых параметров и зонах их допустимых отклонений. При мониторинге контролируемых параметров необходима дополнительная информация о тенденциях изменения измеряемых параметров во времени. Еще больший объем информации требуется при диагностике машин и оборудования: определить место возникновения дефекта, идентифицировать его вид и оценить степень его развития. И наиболее сложной задачей является прогноз изменения технического состояния, позволяющий определить остаточный ресурс или период безаварийной работы.

В "Настоящее время под термином «мониторинг технического состояния» понимается весь комплекс процедур оценки состояния машин или оборудования:

*защита от внезапных поломок,

предупреждение об изменении технического состояния оборудования,

обнаружение на ранних этапах зарождающихся дефектов и определение места их появления, вида и степени развития,

прогноз изменения технического состояния оборудования.

2. Основной принцип технической диагностики

Оценка и прогноз технического состояния объекта диагностики по результатам прямых или косвенных измерений параметров состояния или диагностических параметров и составляет суть технической диагностики.

Само по себе значение параметра состояния или диагностического параметра еще не дает оценки технического состояния объекта.

Чтобы оценить состояние машины или оборудования необходимо знать не только фактические значения параметров, но и соответствующие эталонные значения.

Разность между фактическим ф и эталонным эт значениями диагностических параметров называется диагностическим симптомом.

= эт - ф

Таким образом, оценка технического состояния объекта определяется отклонением фактических значений его параметров от их эталонных значений. Следовательно, любая система технической диагностики (рис. 1) работает по принципу отклонений (принцип Солсбери).

Рис. 1. Функциональная схема технической диагностики

Погрешность, с которой оценивается величина диагностического симптома, в значительной степени определяет качество и достоверность диагноза и прогноза контролируемого объекта. Эталонное значение указывает, какую величину будет иметь соответствующий параметр у исправного хорошо отрегулированного механизма, работающего при такой же нагрузке и таких же внешних условиях.

Математическая модель объекта диагностики может быть представлена набором формул, по которым рассчитываются эталонные значения всех диагностических параметров. Каждая формула должна учитывать условия нагрузки объекта и существенные параметры внешней среды.

3. Термины и определения

Основные термины и определения технической диагностики регламентированы действующими стандартами, например, российским ГОСТом "Техническая диагностика. Основные термины и определения". Некоторые из устоявшихся терминов еще не вошли в соответствующие регламентирующие документы. Ниже приведены лишь наиболее часто употребляемые термины и определения.

Техническое состояние - совокупность свойств объекта, определяющих возможность его функционирования и подверженных изменению в процессе производства, эксплуатации и ремонта.

Работоспособный объект - объект, который может выполнять возложенные на него функции.

Зарождающийся дефект - потенциально опасное изменение состояния объекта в процессе его эксплуатации, при котором значение информативного параметра (или параметров) не вышло за пределы допусков, задаваемых в технической документации.

Дефект - изменение состояния объекта в процессе его изготовления, эксплуатации или ремонта, которое потенциально может привести к уменьшению степени его работоспособности.

Неисправность - изменение состояния объекта, приводящее к уменьшению степени его работоспособности.

Отказ - изменение состояния объекта, исключающее возможность продолжения его функционирования.

Параметры состояния - количественные характеристики свойств объекта, определяющие его работоспособность, заданные технической документации на изготовление, эксплуатацию и ремонт.

Мониторинг - выполняемые без вмешательства в функционирование объекта процессы измерения, анализа и прогнозирования контролируемых параметров или характеристик объекта с отображением их во времени, сравнением с ретроспективными данными и с пороговыми значениями.

Защитный мониторинг - мониторинг, обеспечивающий в случае возникновения аварийной ситуации прекращение функционирования объекта.

Прогнозирующий мониторинг - мониторинг с прогнозом изменения контролируемых характеристик объекта на время, определяемое длительностью прогноза.

Диагностика (диагностирование) - процесс определения состояния объекта.

Тестовая диагностика - процесс определения состояния объекта по его реакции на внешнее воздействие определенного типа

Функциональная (рабочая) диагностика - процесс определения состояния объекта без нарушения режима его функционирования.

Диагностические показатели - значения параметров или характеристик объекта, совокупность которых определяет состояние объекта.

Диагностический признак - свойство объекта, качественно отражающее его состояние, в том числе и появление различных видов дефектов.

Диагностический сигнал - контролируемая характеристика объекта, используемая для выявления диагностических признаков. По диагностическому сигналу могут классифицироваться виды мониторинга и диагностики, например, тепловой или вибрационный мониторинг и диагностика.

Диагностический параметр - количественная характеристика измеряемого диагностического сигнала, входящая в совокупность показателей состояния объекта.

Диагностический симптом - это разность между фактическим и эталонным значениями диагностического параметра.

Диагностика в пространстве состояний - процесс определения состояния объекта по результатам непосредственного измерения параметров состояния.

Диагностика в пространстве признаков - процесс определения состояния объекта по результатам измерения диагностических параметров, определяющих диагностические признаки, в том числе косвенно связанные с параметрами состояния объекта.

Диагностическое правило - совокупность диагностических признаков и параметров, характеризующих появление в объекте определенного вида дефектов или неисправностей, и пороговых значений, разделяющих множества бездефектных объектов и объектов с разной величиной дефекта.

Диагностическая модель - совокупность диагностических правил по всем потенциально опасным дефектам в объекте диагностики.

Алгоритм диагностики - совокупность предписаний по выполнению определенных действий, необходимых для постановки диагноза в соответствии с конкретной диагностической моделью объекта.

Диагноз - заключение о состоянии технического объекта.

Прогноз - заключение о степени работоспособности объекта в течение прогнозируемого периода, вероятности его отказа за этот период или об остаточном ресурсе объекта.

Технические средства мониторинга - средства, предназначенные для измерения и анализа контролируемых характеристик объекта, а также для прогноза их возможных изменений.

Программное обеспечение для мониторинга - программное обеспечение для поддержки баз данных выполняемых для мониторинга измерений и/или для управления этими измерениями.

Технические средства диагностики - средства, предназначенные для измерения диагностических параметров и постановки диагноза.

Система мониторинга и диагностики - совокупность объекта, технических средств мониторинга и диагностики, а также (при необходимости) оператора и эксперта, обеспечивающая постановку диагноза и прогноза состояния объекта.

Автоматическая диагностика - процесс определения состояния объекта диагностики без участия оператора по данным измерений, выполненных техническими средствами диагностики либо с помощью оператора, либо автоматически.

Программы автоматической диагностики - программное || тспечение, позволяющее заменить эксперта персональным компьютером при решении типовых диагностических задач.

4. Разделы технической диагностики

Техническая диагностика вращающегося оборудования - это направление науки и техники, находящееся на стыке многих областей знаний. Для разработки и эксплуатации систем диагностики вращающегося оборудования необходимо иметь знания и практические навыки в таких областях, как:

теория машин и механизмов, позволяющие описать работу объекта диагностики и выбрать основные виды диагностических сигналов;

методы формирования и распространения диагностических сигналов в объекте диагностики, позволяющие оптимизировать объем диагностических измерений;

методы определения влияния дефектов на функционирование объекта диагностики и на свойства диагностических сигналов, позволяющие выбирать и оптимизировать диагностические признаки различных дефектов и неисправностей;

теория сигналов и теория информации, позволяющие получать максимум диагностической информации при минимуме измерений;

теория и техника измерений и анализа сигналов, позволяющие оптимизировать качество диагностических измерений;

теория распознавания состояний, позволяющая с максимально возможной достоверностью определять состояние объекта и идентифицировать дефекты по результатам диагностических измерений;

методы автоматизации различных процессов, позволяющие автоматизировать измерения и анализ диагностических сигналов, постановку диагноза и составление отчетных материалов;

компьютерная техника и операционные системы, позволяющие эксплуатировать современные технические средства диагностики. В технической диагностике можно выделить два взаимосвязанных и взаимопроникающих направления - теория распознавания и теория контролеспособности (рис.2).

Рис.2. Структура технической диагностики

Теория распознавания позволяет решить основную задачу технической диагностики, а именно, распознавание состояния технической системы в условиях ограниченной информации. Она изучает алгоритмы распознавания применительно к задачам диагностики, обычно это задачи классификации.

Алгоритмы распознавания часто основываются на диагностических моделях, которые устанавливают связь между состояниями технической системы и их отображениями в пространстве диагностических сигналов.

Одной из проблем распознавания являются правила принятия решений (исправен объект или не исправен), что всегда связано с риском ложной тревоги и пропуска цели.

Для решения диагностических задач, а именно, определения исправен объект или нет, целесообразно использовать методы статистических решений.

В технической диагностике кроме теории распознавания следует выделить еще одно важное направление - теорию контроле-способности. Контролеспособностью называется свойство изделия обеспечивать достоверную оценку своего технического состояния и раннее обнаружение неисправностей и отказов.

Контролеспособность обеспечивается конструкцией изделия и системой технической диагностики.

К важнейшим задачам теории контролеспособности можно отнести изучение и разработку средств и методов получения диагностической информации, автоматизированный контроль состояния, который предусматривает обработку диагностической информации и формирование управляющих сигналов, разработку алгоритмов поиска неисправностей, диагностических тестов, минимизации процесса установления диагноза и т.д.

В технической диагностике вращающегося оборудования абсолютное большинство диагностических задач решается методами виброакустической диагностики, в которой вопросы контролеспособности объекта являются наиболее сложными, а необходимые для диагностики разделы знаний в большинстве случаев не входят и дисциплины, традиционно читаемые инженерам-механикам.

Для практического освоения виброакустической диагностики, и первую очередь, необходимо изучить:

влияние дефектов на шум и вибрацию машин и механизмов,

методы и средства измерения и анализа шума и вибрации,

методы обнаружения и идентификации дефектов по сигналу вибрации и шума.

5. Основные этапы технической диагностики

Первым этапом оценки технического состояния любого объекта является определение номенклатуры дефектов, которые представляют наибольшую опасность для его функционирования и должны обнаруживаться в процессе диагностики. Для ее решения проводятся специальные исследования причин наиболее частых отказов объектов диагностики или их аналогов, а также тех изменений параметров состояния, которые измеряются в процессе предремонтной дефектации аналогичных объектов, отработавших межремонтный ресурс.

Второй этап - это определение совокупности максимально возможных параметров состояния, диагностических признаков и диагностических параметров, которые могут быть измерены для определения технического состояния объекта.

(Избыточность параметров в этой совокупности необходима для того, чтобы выбрать из всех возможных параметров те, которые наиболее доступны для измерения, имеют минимальные ошибки определения диагностических симптомов и позволяют обнаруживать дефекты на стадии их зарождения.)

Как правило, вторая задача решается на основе многочисленных опубликованных результатов исследований влияния дефектов на разные параметры состояния и диагностические параметры сигналов контролируемых объектов.

Следующий, третий этап оценки технического состояния - это оптимизация совокупности измеряемых параметров состояния и диагностических параметров. Эта совокупность должна отражать развитие всех дефектов, определяющих ресурс контролируемого узла или машины в целом. При этом желательно, чтобы каждый параметр из выбранной совокупности зависел бы преимущественно от одного вида дефекта. При выборе параметров предпочтение отдается тем, которые в значительной степени зависят от дефектов и слабо от режимов и условий работы, наиболее доступны для измерения, имеют минимальные ошибки определения диагностических симптомов и позволяют обнаруживать дефекты на стадии их зарождения.

Для оценки технического состояния объекта необходимо определять для каждого параметра не только его эталонное значение, которое характеризует состояние бездефектного объекта, но и его пороговые значения, характеризующие состояние объекта с дефектом определенной величины, т.е. определяющие допустимую величину изменения данного контролируемого параметра.

Таким образом, значение параметра состояния или диагностического параметра, соответствующее состоянию объекта с дефектом определенной величины, принято называть пороговым значением (пороговым уровнем) параметра при этом виде дефекта. Параметр состояния или диагностический параметр может иметь несколько, например, три пороговых значения, характеризующих, соответственно, зарождающийся, средний и сильный дефекты.

Эталонные значения параметров состояния и диагностических параметров могут определяться различными способами. Один из них - расчетный с использованием математической модели объекта.

Математическая модель объекта может представлять собой набор формул, по которым рассчитываются эталонные значения всех выбранных параметров для конкретного режима работы объекта с учетом конкретных внешних условий. В нее же входят и формулы, определяющие пороги допустимых значений этих же параметров при появлении тех или иных дефектов.

Еще один способ определения эталонных и пороговых значений - это определение их по результатам непосредственных измерений параметров состояния или диагностических параметров. При этом эталонные и пороговые значения могут определяться как по измерениям одних и тех же параметров группы одинаковых дефектов, работающих в одинаковых режимах и внешних условиях, так и по периодическим измерениям каждого из этих параметров у одного объекта.

Пороговые значения дефектов - это термин, который используется для определения пороговых значений величин диагностических параметров, характеризующих диагностические признаки дефекта конкретного вида. Пороговые значения дефектов также могут определяться различными способами. Один из них - расчетный с использованием математической модели объекта диагностирования, если в модель включены соответствующие формулы для расчета влияния дефектов на параметры состояния или диагностические параметры. Пороговые значения дефектов могут определяться и по результатам экспериментальной оценки эталона параметра бездефектного объекта диагностики эт и статистической величины ошибки измерения эталона, например 2 , где -| среднеквадратическое отклонение параметра. Это значение, например эт +2 и может быть принято за пороговое значение дефекта в том случае, если имеется априорная информация о диапазоне изменения величины диагностического параметра в зависимости от величины дефекта и известно, что этот диапазон в несколько раз превышает ошибку измерения эталона. Еще один способ определения пороговых значений дефектов - экспериментальное многократное моделирование дефектов в однотипных объектах диагностики со статистической оценкой величины соответствующего диагностического симптома.

В технической диагностике, как уже упоминалось, в зависимости от ошибки измерения диагностического симптома может использоваться несколько пороговых значений дефектов. Если погрешность измерения симптома велика, чаще всего используется два порога - порог допустимых отклонений диагностического параметра от эталона (порог появления дефекта) и порог аварийного отклонения диагностического параметра от эталона. При использовании чувствительных к появлению дефектов диагностических параметров, позволяющих достаточно точно определять величины дефектов, количество порогов может быть больше, например пороги слабого, среднего и сильного дефекта, а также порог аварийного отклонения состояния объекта. Следует отметить, что практически во всех случаях величины порогов, определяемые как расчетными, так и экспериментальными способами, требуют корректировки в процессе адаптации технических систем диагностики к условиям их работы.

После решения третьей, наиболее сложной с практической точки зрения задачи, оптимизации диагностических параметров с построением эталонов и пороговых значений, необходимо выбрать методы и технические средства измерений и анализа диагностических сигналов, а также, если это возможно, параметров состояния объекта диагностики. На этом этапе также осуществляется выбор точек контроля диагностических параметров и режимов работы объекта во время диагностирования. Основной задачей этого выбора является минимизация затрат на диагностические измерения без потерь качества диагностики, т.е. с сохранением минимальной вероятности пропуска дефектов в процессе диагностирования.

Следующий этап - создание диагностической модели, т.е. совокупности диагностических параметров и правил их измерения, их эталонных значений и пороговых значений дефектов. Кроме этого в диагностическую модель входят правила принятия решений в тех случаях, когда одним и тем же дефектам соответствует группа различных признаков и параметров и, что не менее сложно, когда один и тот же признак или параметр отвечает за появление разных дефектов в различных режимах работы объекта диагностики.

Современные системы диагностики кроме оценки состояния объекта дают возможность прогноза его работоспособности. Для этого анализируются тренды, представляющие собой зависимость диагностических симптомов от времени.

На рис.3а представлен тренд, характеризующий четыре этапа изменения характеристик вибрации, что соответствует четырем этапам жизненного цикла машины или оборудования. Первый этап Т 1 - приработка машины, второй Т 2 - нормальная работа, третий Т 3 -развитие дефекта, четвертый Т 4 - этап деградации (устойчивое развитие цепочки дефектов с момента, когда появляется потребность к обслуживании или ремонте объекта, до момента возникновения аварийной ситуации).

Наибольшая практическая сложность для решения задач диагноза и прогноза состояния машин возникает на первом этапе. Это обусловлено возможностью появления специфических дефектов изготовления и монтажа машины, многие из которых после приработки исчезают, что затрудняет дальнейшую оценку ее состояния.

Существует два основных вида прогнозирования состояния объектов диагностики. Первый - по тренду, построенному в результате аппроксимации ретроспективных данных диагностических симптомов с дальнейшей экстраполяцией аппроксимирующей функции.

В этом случае прогнозирование требует знания предельного значения диагностического симптома пр и фактической кривой тренда, который совсем не обязательно бывает линейным и может характеризоваться большим разбросом точек. При условии монотонности тренда остаточный ресурс может быть оценен в первом приближении как интервал времени с момента последнего измерения диагностического параметра до момента времени, соответствующего точке пересечения тренда с линией, характеризующей предельное значение диагностического симптома пр (рис.3,6).

Рис. 3. Тренды:

а - типовая зависимость величины диагностического симптома от времени; б - тенденция развития диагностического симптома во времени, построенная по ретроспективным данным с дальнейшей экстраполяцией аппроксимирующей зависимости (* - экспериментально полученные данные ); в - зависимость изменения диагностического симптома от времени, построенная с момента нормальной работы машины до выхода ее из строя; г - зависимость диагностического симптома от времени с момента развития первого дефекта до полного выхода машины из строя

Второй вид прогнозирования - по заранее известному тренду, построенному с момента начала нормальной работы однотипных машин до полного их выхода из строя, т.е. по всему жизненному циклу подобных машин (рис.3,в). Тогда остаточный ресурс в первом приближении может быть оценен как разность времени t пр, соответствующего предельному значению диагностического симптома пр, и времени t изм, соответствующего значению диагностического симптома изм на момент измерения диагностического параметра.

Во многих практических случаях тренды могут быть немонотонными. Так, на рис.3,г представлен тренд, участок I которого характеризует развитие одного дефекта, на участке II наблюдается стабилизация уровня вибрации и на участке III производная изменения уровня вибрации увеличивается в результате появления еще одного дефекта. В этом случае достоверный прогноз состояния объекта и оценка остаточного ресурса возможны только на последнем участке развития цепочки дефектов.

6. Функциональная и тестовая диагностика

По тем действиям, которые производятся с объектом, техническую диагностику можно разделить на функциональную (рабочую) и тестовую.

Функциональная диагностика осуществляется без нарушения режимов работы объекта, т.е. при выполнении им своих функций. Все измерения или другие виды оценки параметров состояния и диагностических параметров, анализ результатов и принятие решения выполняются до того, как по результатам оценки состояния формируется, если это необходимо, результирующее воздействие на объект, например, прекращается его работа или он переводится на другой режим функционирования (рис.4).

По способу получения диагностической информации функциональная диагностика подразделяется на вибрационную, тепловую, электрическую и т.п. Тестовая диагностика - это определение состояния объекта по результатам его реакции на внешнее воздействие. Отличительной особенностью этого вида диагностики является использование источника внешнего воздействия, например, генератора тестовых сигналов (рис.4).

Рис.4. Схема основных операций функциональной и тестовой диагностики

Если генератором тестовых сигналов является источник определенного вида излучений, например акустических, рентгеновских, электромагнитных и других, то такой вид тестовой диагностики часто называют дефектоскопией.

Генератором тестовых сигналов (воздействий) может быть и система управления объектом, а самим воздействием - включение (выключение) объекта, переход на другой режим и т.п. Диагностическая информация в этом случае содержится в переходных процессах, сопровождающих смену режима работы объекта.

К тестовым воздействиям с диагностической тоски зрения можно отнести все виды неразрушающих испытаний объектов, например, испытания повышенным напряжением электрических машин, аппаратов и сетей на предмет обнаружения нарушений изоляции, испытания оборудования на предельных нагрузках или давлениях, тепловые испытания и т.д.

Тестовая диагностика существовала уже в начале XX века и представляла собой основной вид технической диагностики, оставляя за функциональной диагностикой лишь решение отдельных задач, и в первую очередь, задач аварийной защиты технических систем. Функции аварийной защиты выполняли средства контроля таких параметров состояния объекта, которые, с одной стороны, значительно изменялись на начальных стадиях развития аварийной ситуации, а, с другой стороны, были доступны для измерения простейшими средствами контроля.

Во второй половине XX века стали интенсивно развиваться методы и технические средства мониторинга технических систем, которые, не нарушая режимов работы, обеспечивали слежение и глубокий анализ многих характеристик и свойств этих систем. Вместе с мониторингом стала развиваться и функциональная диагностика, которая взяла на себя функции интерпретации причин обнаруживаемых при мониторинге изменений характеристик и свойств технических систем.

И лишь в последнее десятилетие XX века глубокая функциональная диагностика технических объектов получила стимул для интенсивного развития. Он связан с реальным переводом технических объектов, и особенно машин и оборудования, с обслуживания и ремонта по регламенту на ремонт и обслуживание по фактическому состоянию. Для реализации такого перевода потребовались новые методы и средства технической диагностики, которые смогли бы обеспечить глубокую профилактическую диагностику объектов с долгосрочным прогнозом состояния. Естественно, что методы функциональной диагностики стали основой для разработок в этой области и лишь в редких случаях к ним добавлялись наиболее эффективные из методов тестовой диагностики технических систем.

Профилактическая (превентивная) диагностика технических систем, объединяющая лучшие из достижений функциональной и тестовой диагностики, по своим задачам во многом похожа на медицинский контроль профессиональной пригодности людей, работающих в опасных условиях, и включающий в себя кроме периодического общего контроля их здоровья, еще и раннюю диагностику, и предупреждение профилактических заболеваний. Задачи такой диагностики несколько отличаются от задач мониторинга и тестовой диагностики, а их решение требует разработки более тонких методов и более эффективных средств массового диагностического обслуживания. В последние годы в технической диагностике этим вопросам уделяется наибольшее внимание.

7. Методология технической диагностики

Методология диагностики технических объектов включает в себя описание их бездефектных состояний и состояний с различными видами дефектов, выбор контролируемых параметров состояния и/или диагностических сигналов, оптимизацию диагностических параметров и средств их измерения и, наконец, составление алгоритмов постановки диагноза и прогноза.

При составлении подобных алгоритмов необходимо классифицировать возможные состояния объектов. Чаще всего эти состояния разбиваются на два подмножества - работоспособные и неработоспособные.

Для подмножества работоспособных состояний «оставляются алгоритмы определения и прогноза степени работоспобности объекта, поиска дефектов, а для подмножества неработоспособных состояний - только алгоритмы поиска неисправностей (дефектов). В таком случае процесс формирования технического диагноза может быть представлен в виде структурной схемы (рис.5).

Виброакустическая диагностика имеет свою особенность - она дает наиболее эффективные результаты в основном тогда, когда объект может функционировать и в нем формируются колебательные силы, возбуждающие вибрацию и/или шум.

Именно поэтому в виброакустической диагностике множество состояний объекта разбивается минимум на два подмножества - множество бездефектных состояний и множество состояний с дефектами (неисправностями), при которых объект остается работоспособным, но степень его работоспособности снижается. Те же состояния, когда объект теряет работоспособность, исключаются из рассмотрения в виброакустической диагностике и ими занимаются обычно в рамках другой области техники, называемой дефектацией.

Рис.5. Процесс формирования технического диагноза

Алгоритмы диагностики составляются при следующих допущениях.

Объект может находиться в конечном множестве состояний S, разделяемом на два подмножества S 1 (бездефектные состояния, различающиеся, например, режимами работы объекта) и S 2 (состояния с различными видами дефектов, при которых объект остается работоспособным).

Каждое состояние из подмножества S 2 отличается степенью или запасом работоспособности. Состояние объекта характеризуется совокупностью диагностических показателей d 1 , d 2 ,…, d k , которая представляет собой вектор состояния D:

D = (d 1 , d 2 ,…, d k).

Диагностические показатели могут представлять собой параметры или характеристики.

В качестве параметров могут быть использованы, например, уровень вибрации или акустического шума, давление, сопротивление изоляции, температура и т.п. В качестве характеристик могут быть использованы показатели, характеризующие форму кривой, например огибающая спектра сиг нала вибрации или шума ("маска"), затухание, крутизна и т.п.

Условие работоспособности задают областью работоспособности исходя из следующих предположений:

вектор состояний оборудования определен,

существует номинальный вектор состояний,

отклонения вектора состояний от номинального допускают только в определенных пределах,

допустимые отклонения определяют область работоспособности.

Условия работоспособности задают по-разному для случае использования в качестве диагностического показателя параметров или характеристик.

Если в качестве диагностического показателя используете один параметр, то условия работоспособности задаются неравенствами, ограничивающими его значение с одной или с двух сторон.

Таким образом, объект работоспособен, если все неравенств выполняются:

d i > d iн, d i < d iв,

d iн < d i < d iв,

где d i , d i н и d i в - соответственно, текущее, нижнее допустимое и верхнее допустимое значения диагностического параметра.

Каждый из диагностических показателей состояния d j может определяться по совокупности диагностических параметров d ji , … , d j 1:

d j = d ji , … , d j 1

Для каждого диагностического параметра d i существует номинальное значение d 0 i , область допустимых отклонений 0 i и предельное отклонение (порог опасного изменения параметра) i пр, при превышении которого объект считается неработоспособным и должен быть остановлен.

Объект считается бездефектным, если для каждого параметра выполняется неравенство

| d i - d 0 i | ? d 0 i ,

качество диагностика мониторинг эталонный

где 0 i - порог допустимого отклонения.

Объект считается неработоспособным, если хотя бы для одного| из параметров выполняется неравенство

| d i - d 0 i | > i пр,

где i пр - порог опасного изменения параметра.

Во всех других случаях объект имеет ограниченную работоспособность.

В качестве диагностических показателей могут использоваться не только параметры, но и характеристики объекта у = f(х), где x и у - входная и выходная переменные соответственно. В последнем случае условие работоспособности объекта определяется отклонения р (f , ) текущей характеристики f (х) объекта от номинальной (х):

где р - фиксированный параметр, определяющий критерий принятия решения о степени отклонения текущей характеристики от номинальной.

При р= 1 выражение дает оценку среднего отклонения (критерий среднего отклонения) :

При р=2 получим среднеквадратическое отклонение, т.е большее отклонение будет иметь больший вес (критерий средне-квадратического отклонения):

При р = основной вклад в выражение вносит только одно максимальное отклонение (критерий равномерного приближения) :

x (a , b )

В общем случае условие работоспособности представляется в виде

где - допустимое отклонение.

Если характеристики у = f (х) оцениваются по точкам на ограниченном интервале значений входной переменной х а, b , то условие работоспособности задают в виде неравенств для каждой точки:

Полагают, что объект работоспособен, если последние неравенства выполняются для всех без исключения точек, входящих в диапазон (а, b).

Сложные объекты в целом оцениваются как работоспособные при условии работоспособности каждого его узла или структурной единицы.

В случаях ограниченной работоспособности контролируемого объекта при любой степени (запасе) его работоспособности задами ми диагностики являются идентификация и прогноз развития имеющихся дефектов, определение интервала безаварийной работы или остаточного ресурса объекта.

8. Выбор диагностического сигнала

Оценить состояние оборудования можно по величинам свойств: механических (износ, деформация, перемещение и т.п.); электрических (напряжение, ток, мощность и др.); химических состав газов, смазки и т.п.), а также по излучению энергии (тепловой, электромагнитной, акустической и т.п.).

Эти величины, преобразованные, как правило, в электрические сигналы, обрабатывают специальные технические средства, а оператор принимает решение об изменении режима работы, о возможности дальнейшего использования оборудования, о мерах, которые необходимо принять для поддержания надежности, а при полной автоматизации оператор получает рекомендации, что делать.

При выборе диагностического сигнала для решения такой сложной задачи, как оценка технического состояния машины или оборудования с определением места возникновения дефекта, идентификацией вида дефекта и степени его развития, а также прогнозирование изменения технического состояния объекта, требуется большой объем диагностической информации.

Такие диагностические сигналы, как температура, давление, напор жидкости, наличие металлических частиц в смазке и т.п., можно характеризовать практически только одним параметром - их величиной (если не говорить о присущих большинству сигналов таких параметрах, как, например скорость их изменения, инерционность и т.п.).

Значительно больший объем диагностической информации содержится в акустическом или гидродинамическом шуме и вибрации - это их общий уровень, уровни в определенных полосах частот, соотношения между этими уровнями, амплитуды, частоты и начальные фазы каждой составляющей, соотношения между амплитудами и частотами и т.д.

Таким образом, именно сигналы вибрации и шума в наибольшей степени удовлетворяют требованию, предъявляемому к диагностическим сигналам для решения задач глубокой диагностики и прогноза состояния машин.

Еще одним важным обстоятельством в пользу выбора вибрации машин и оборудования в качестве диагностического сигнала является то, что дополнительные колебательные силы, возникающие из-за дефекта, возбуждают вибрацию непосредственно в месте его появления.

Вибрация практически без потерь распространяется до точки ее измерения, и, поскольку машина «прозрачна» для вибрации, появляется возможность исследовать колебательные силы, действующие в работающей машине. Это позволяет диагностировать ее на рабочем месте, без остановки и разборки.

10.Теоритические основы вибрадиагностики

Вибрационная диагностика -- метод диагностирования технических систем и оборудования, основанный на анализе параметров вибрации, либо создаваемой работающим оборудованием, либо являющейся вторичной вибрацией, обусловленной структурой исследуемого объекта.

Вибрационная диагностика, как и другие методы технической диагностики, решает задачи поиска неисправностей и оценки технического состояния исследуемого объекта.

Диагностические параметры: При вибрационной диагностике как правило исследуются временной сигнал или спектр вибрации того или иного оборудования. Также применяется кепстральный анализ (кепстр -- анаграмма слова спектр ).

При вибрационной диагностике анализируются виброскорость , виброперемещение , виброускорение .

В качестве диагностических параметров могут выступать следующие:

· ПИК -- максимальное значение сигнала на рассматриваемом интервале времени;

· СКЗ -- среднее квадратическое значение (действующее значение ) сигнала для рассматриваемой полосы частот;

· ПИК-фактор -- отношение параметра ПИК к СКЗ;

· ПИК-ПИК -- (Размах ) разница между максимальным и минимальным значением сигнала на рассматриваемом интервале времени;

· SPM - метод ударных импульсов, основанный на использовании специального датчика с резонансной частотой 32 кГц и алгоритма обработки ударных волн малой энергии, генерируемых подшипниками качения вследствие соударений и изменений давления в зоне качения этих подшипников (Эдвин Сёхль, SPM Instrument, Швеция, 1968г.);

· EVAM - Аббревиатура EVAM является сокращением от "Evaluated Vibration Analysis Method", что в переводе означает "Метод анализа вибрации с оценкой состояния". Метод EVAM® объединяет в себе различные общепризнанные методики анализа вибросигналов вместе с программными средствами практической оценки состояния оборудования на основе результатов такого анализа. Поддерживается программно и аппаратно, как и метод SPM, оборудованием и ПО производства фирмы SPM Instrument AB (Швеция)

· SPM-M: пик-фактор на резонансной частоте акселерометра (ООО Бифор) (1980г.)

· RPF: пик-фактор высших частот вибрации механизмов (1982г.)

· VСС - контроль степени кондиции смазки (1995г.)

· ARP: распределение амплитуд импульсов сухого трения в узлах машин (2001г.)

· Entropy- вибрационно-энтропийная оценка состояния узлов машин (2002г.)

Из датчиков вибрации наиболее часто применяются акселерометры (вибропреобразователи ускорения)пьезоэлектрические датчики .

Применение метода: Наибольшее развитие метод получил при диагностировании подшипников качения. Также вибрационный метод успешно применяется при виброиспытании изделий и диагностике колёсно-редукторных блоков на железнодорожном транспорте.

Заслуживают внимания виброакустические методы поиска утечек газа и в гидрооборудовании. Суть этих методов заключается в следующем. Жидкость или газ, дросселируя через щели и зазоры, создаёт турбулентность, сопровождающуюся пульсациями давления, и, как следствие, в спектре вибраций и шума появляются гармоники соответствующих частот. Анализируя амплитуду этих гармоник, можно судить о наличии (отсутствии) течей.

Интенсивное развитие метода в последние годы связано с удешевлением электронных вычислительных средств и упрощением анализа вибрационных сигналов.

Преимущества:

· метод позволяет находить скрытые дефекты;

· метод, как правило, не требует сборки-разборки оборудования;

· малое время диагностирования;

· возможность обнаружения неисправностей на этапе их зарождения.

· снижение ожидаемого риска возникновения аварийной ситуации при эксплуатации оборудования.

Недостатки:

· особые требования к способу крепления датчика вибрации;

· зависимость параметров вибрации от большого количества факторов и сложность выделения вибрационного сигнала обусловленного наличием неисправности, что требует глубокого применения методов корреляционного и регрессионного анализа.

· точность диагностирования в большинстве случаев зависит от числа сглаженных (осреднённых) параметров, например числа оценок SPM.

Размещено на Allbest.ru

...

Подобные документы

    Понятие и характеристика методов неразрушающего контроля при проведении мониторинга технического состояния изделий, их разновидности и отличительные черты. Физические методы неразрушающего контроля сварных соединений, определение их эффективности.

    курсовая работа , добавлен 14.04.2009

    Исследование возможности контроля технического состояния оборудования по его вибрации. Назначение и возможности систем вибрационного контроля на примере переносного диагностического комплекса ВЕКТОР–2000, диагностируемые узлы и обнаруживаемые дефекты.

    дипломная работа , добавлен 29.10.2011

    Характеристика критериев надежности газоперекачивающих агрегатов с газотурбинным приводом. Классификация отказов оборудования, диагностика деталей, омываемых маслом. Изучение методов исследования текущего технического состояния ГПА в период эксплуатации.

    диссертация , добавлен 10.06.2012

    Основные сведения о квалиметрии. Разработка методики и алгоритма оценивания качества. Определение эталонных и браковочных значений показателей свойств, относительного уровня качества, коэффициента весомости экспертным методом, комплексной оценки качества.

    курсовая работа , добавлен 10.06.2015

    Задачи технического диагностирования объектов нефтяной и газовой промышленности. Обследование технических объектов. Применяемые методы контроля и ДТС. Устройство, принцип работы и техническая характеристика компрессора. Оценка показателей надежности.

    курсовая работа , добавлен 09.04.2015

    Основные требования автоматизированных систем управления взвешиванием и дозированием. Выбор и техническая характеристика исполнительных механизмов. Разработка структурной схемы системы управления и электрических схем подключения средств автоматизации.

    курсовая работа , добавлен 15.04.2015

    Определение основных показателей надежности технических объектов с применением математических методов. Анализ показателей надежности сельскохозяйственной техники и разработка мероприятий по ее повышению. Организации испытания машин на надежность.

    курсовая работа , добавлен 22.08.2013

    Отказы и неисправности коробки передач. Перегрев коробки передач. Субъективные методы диагностирования техники. Процесс определения технического состояния объекта диагностирования по структурным параметрам. Диагностические приборы и приспособления.

    курсовая работа , добавлен 02.09.2012

    Причины, задачи и содержание экспертизы. Срок службы оборудования, возможность его продления. Определение соответствия параметров технического состояния оборудования нормируемым значением, мест и причин порчи. Оценка достоверности работы экспертов.

    презентация , добавлен 03.01.2014

    Место вопросов надежности изделий в системе управления качеством. Структура системы обеспечения надежности на базе стандартизации. Методы оценки и повышения надежности технологических систем. Предпосылки современного развития работ по теории надежности.

  • 2.5. Пуск оборудования в эксплуатацию. Эксплуатационная обкатка машин
  • 3. Режимы работы и эффективность использования оборудования
  • 3.1. Сменный, суточный и годовой режимы
  • Работы оборудования
  • 3.2. Производительность и норма выработки машин
  • 3.3. Стоимость эксплуатации оборудования
  • 3.4. Анализ эффективности работы оборудования
  • 4. Надежность оборудования и ее изменение при эксплуатации
  • 4.1. Показатели надежности оборудования
  • 4.2. Общие принципы сбора и обработки
  • Статистической информации о надежности
  • Оборудования при эксплуатации
  • Сбор информации об отказах оборудования
  • Обработка эксплуатационной информации по отказам
  • Оценка надежности оборудования
  • 4.3. Поддержание надежности оборудования при эксплуатации
  • На этапе эксплуатации оборудования
  • 5. Причины отказов оборудования при эксплуатации
  • 5.1. Специфика условий эксплуатации оборудования для бурения скважин, добычи и подготовки нефти и газа
  • 5.2. Деформация и изломы элементов оборудования
  • 5.3. Износ элементов оборудования
  • 5.4. Коррозионные разрушения элементов оборудования
  • 5.5. Сорбционные разрушения элементов оборудования
  • 5.6. Коррозионно-механические разрушения элементов оборудования
  • 5.7. Сорбционно-механические разрушения элементов оборудования
  • 5.8. Образование на поверхностях оборудования отложений твердых веществ
  • 6. Организация технического обслуживания, ремонта, хранения и списания оборудования
  • 6.1. Система технического обслуживания и ремонта оборудования
  • Виды технического обслуживания и ремонта оборудования
  • Стратегии то и р оборудования
  • Организация и планирование то и р оборудования по наработке
  • Организация и планирование то и р оборудования по фактическому техническому состоянию
  • 6.2 Смазочные материалы и спецжидкости назначение и классификация смазочных материалов
  • Жидкие смазочные материалы
  • Пластичные смазочные материалы
  • Твердые смазочные материалы
  • Выбор смазочных материалов
  • Способы смазки машин и смазочные устройства
  • Жидкости для гидравлических систем
  • Тормозные и амортизаторные жидкости
  • Использование и хранение смазочных материалов
  • Сбор отработанных масел и их регенерация
  • 6.3. Хранение и консервация оборудования
  • 6.4. Гарантийные сроки и списание оборудования
  • Списание оборудования
  • 7. Диагностика технического состояния оборудования
  • 7.1. Основные принципы технического диагностирования
  • 7.2. Методы и средства технической диагностики
  • Средства диагностики технического состояния оборудования
  • Методы и средства диагностического контроля насосных агрегатов
  • Методы и средства диагностического контроля трубопроводной запорной арматуры
  • 7.3. Методы и технические средства дефектоскопии материала деталей машин и элементов металлоконструкций
  • 7.4. Методы прогнозирования остаточного ресурса оборудования
  • 8. Технологические основы ремонта оборудования
  • 8.1. Структура производственного процесса ремонта оборудования
  • Индивидуальным методом
  • 8.2. Подготовительные работы для сдачи оборудования в ремонт
  • 8.3. Моечно-очистные работы
  • Состав смывок для очистки поверхности от лакокрасочных покрытий
  • 8.4. Разборка оборудования
  • 8.5. Контрольно-сортировочные работы
  • 8.6. Комплектование деталей оборудования
  • 8.7. Балансировка деталей
  • 8.8. Сборка оборудования
  • 8.9. Приработка и испытание агрегатов и машин
  • 8.10. Окраска оборудования
  • 9 Способы восстановления сопряжений и поверхностей деталей оборудования
  • 9.1. Классификация способов восстановления сопряжений
  • 9.2. Классификация способов восстановления поверхностей деталей
  • 9.3. Выбор рационального способа восстановления поверхностей деталей
  • 10 Технологические методы, применяемые для восстановления поверхностей и неразъемных соединений ремонтируемых деталей
  • 10.1. Восстановление поверхностей наплавкой
  • Ручная газовая наплавка
  • Ручная электродуговая наплавка
  • Автоматическая электродуговая наплавка под слоем флюса
  • Автоматическая электродуговая наплавка в среде защитных газов
  • Автоматическая вибродуговая наплавка
  • 10.2. Восстановление поверхностей металлизацией
  • 10.3. Восстановление поверхностей гальваническим наращиванием
  • Электролитическое хромирование
  • Электролитическое осталивание
  • Электролитическое меднение
  • Электролитическое никелирование
  • 10.4. Восстановление поверхностей деталей пластическим деформированием
  • 10.5. Восстановление поверхностей полимерным покрытием
  • Полимерных покрытий:
  • 10.6. Восстановление поверхностей механической обработкой
  • 10.7. Соединение деталей и их отдельных частей методами сварки, пайки и склеивания соединение деталей сваркой
  • Соединение деталей пайкой
  • Склеивание деталей
  • 11 Типовые технологические процессы ремонта деталей
  • 11.1. Ремонт деталей типа валов
  • 11.2. Ремонт деталей типа втулок
  • 11.3. Ремонт деталей типа дисков
  • Ремонт зубчатых колес
  • Ремонт цепных колес
  • 11.4. Ремонт корпусных деталей
  • Ремонтных деталей:
  • Ремонт корпуса вертлюга
  • Ремонтных деталей:
  • Ремонт корпуса крейцкопфа бурового насоса
  • Ремонт клапанных коробок буровых насосов
  • Дополнительных ремонтных деталей:
  • Ремонт корпусов задвижек фонтанной и трубопроводной запорной арматуры
  • Ремонт корпуса турбобура
  • Способом замены части детали:
  • 7. Диагностика технического состояния оборудования

    7.1. Основные принципы технического диагностирования

    Диагностика - отрасль науки, изучающая и устанавливающая признаки состояния системы, а также методы, принципы и средства, при помощи которых дается заключение о характере и существе дефектов системы без ее разборки и производится прогнозирование ресурса системы.

    Техническая диагностика машин представляет систему методов и средств, применяемых при определении технического состояния машины без ее разборки. При помощи технической диагностики можно определять состояния отдельных деталей и сборочных единиц машин, производить поиск дефектов, вызвавших остановку или ненормальную работу машины.

    На основе полученных при диагностике данных о характере разрушения деталей и сборочных единиц машины в зависимости от времени ее работы техническая диагностика позволяет прогнозировать техническое состояние машины на последующий срок работы после диагностирования.

    Совокупность средств диагностирования, объекта и исполнителей, действующих по установленным алгоритмам, называется системой диагностирования.

    Алгоритм - это совокупность предписаний, определяющих последовательность действий при диагностировании, т.е. алгоритм устанавливает порядок проведения проверок состояния элементов объекта и правила анализа их результатов. Причем безусловный алгоритм диагностирования устанавливает заранее определенную последовательность проверок, а условный - в зависимости от результатов предыдущих проверок.

    Техническое диагностирование - это процесс определения технического состояния объекта с определенной точностью. Результатом диагностирования служит заключение о техническом состоянии объекта с указанием при необходимости места, вида и причины дефекта.

    Диагностирование - один из элементов системы ТО. Основная его цель - достижение максимальной эффективности эксплуатации машин и, в частности, сведение до минимума затрат на их ТО. Для этого дают своевременную и квалифицированную оценку технического состояния машины и разрабатывают рациональные рекомендации по дальнейшему использованию и ремонту сборочных.единиц (обслуживанию, ремонту, дальнейшей эксплуатации без обслуживания, замене сборочных единиц, материалов и т.п.).

    Диагностирование проводят как при ТО, так и при ремонте.

    При ТО задачи диагностирования заключаются в том, чтобы установить потребность в проведении капитального или текущего ремонта машины или ее сборочных единиц; качество функционирования механизмов и систем машин; перечень работ, которые необходимо выполнить при очередном техническом обслуживании.

    При ремонте машин задачи диагностирования сводятся к выявлению сборочных единиц, подлежащих восстановлению, а также оценке качества ремонтных работ. Виды технического диагностирования классифицируют по назначению, периодичности, месту проведения, уровню специализации (табл. 7.1). В зависимости от парка машин диагностирование проводят силами Эксплуатационного предприятия или на специализированных предприятиях технического сервиса.

    Диагностирование, как правило, совмещают с проведением работ по ТО. Кроме того, при возникновении отказов машины проводят углубленное диагностирование по заявке оператора.

    В последнее время появилась сеть малых предприятий по оказанию услуг технического сервиса машин, в том числе и диагностирования, т.е. диагностирование в этом случае выводится из состава работ по ТО и становится самостоятельной услугой (товаром), которая оказывается по заявке клиента как в период эксплуатации, так и при оценке качества ремонта, остаточной стоимости работ по восстановлению работоспособности и исправности машин, а также при купле и продаже машин, бывших в употреблении.

    Работы по диагностированию на эксплуатационном предприятии проводятся в зависимости от размера и состава парка машин на специализированном участке (посту) диагностирования или на участке (посту) ТО. Объектом технической диагностики может быть техническое устройство или его элемент. Простейшим объектом технической диагностики будет кинематическая пара или сопряжение. Однако в класс рассматриваемых объектов может быть включен агрегат любой сложности. Диагностируемый объект можно рассматривать в двух аспектах: с точки зрения структуры и способа функционирования. Каждый из аспектов имеет особенности, описываемые своей системой понятий.

    Под структурой системы понимается определенная взаимосвязь, взаиморасположение составных частей (элементов), характеризующих устройство и конструкцию системы.

    Параметр - качественная мера, характеризующая свойство системы, элемента или явления, в частности процесса. Значение параметра - количественная мера параметра.

    Объективные методы диагностирования дают точную количественную оценку сборочной единицы, машины. Они основаны на использовании как специальных контрольно-диагностических средств (оборудования, приборов, инструмента, приспособлений), так и устанавливаемых непосредственно на машинах или входящих в комплект инструмента машиниста.

    Таблица 7.1

    Виды диагностирования и области их применения

    Квалифицирующий признак

    Вид диагностирования

    Область применения

    Основные задачи

    По месту диагностирования

    По объему

    По периодичности

    По уровню специализации

    Эксплуатационное

    Производственное

    Частичное

    Плановое (регламентированное)

    Внеплановое (причинное)

    Специализированное

    Совмещенное

    При техническом обслуживании, осмотрах, возникновении отказов и неисправностей

    При ремонте машин на ремонтных предприятиях

    При входном и выходном контроле машин в ремонтном производстве

    При технических осмотрах

    При периодическом ТО и осмотрах

    При возникновении отказов и неисправностей

    При обслуживании машин на сервисных предприятиях и силами ЦБПО При ремонте машин

    При обслуживании машин эксплуатационным предприятием и силами ЦБПО

    Определение остаточного ресурса сборочных единиц и потребности в регулировочных работах. Установление объема и качества ремонтных работ, обнаружение неисправностей, оценка готовности машин к работам

    Определение остаточного ресурса сборочных единиц. Контроль качества ремонтных работ

    Определение остаточного ресурса сборочных единиц, проверка качества их функционирования, выявление перечня регулировочных работ, предотвращение отказов

    Определение перечня необходимых регулировочных работ, проверка готовности машин к работе или качества их хранения, выявление неисправностей с последующим их устранением

    Предотвращение отказов, определение остаточного ресурса, установление перечня регулировочных работ, проверка качества обслуживания и ремонта машин

    Выявление отказов и неисправностей с последующим их устранением

    Проведение диагностирования, предусмотренного ТО-3 и после межремонтной наработки

    Определение остаточного ресурса сборочных единиц, проверка качества ремонта

    Диагностирование с последующим обслуживанием машины, проверка потребности машин в ремонте с устранением дефектов. Выявление и устранение дефектов при возникновении отказов

    Объективное диагностирование разделяют на прямое и косвенное

    Прямое диагностирование - это процесс определения технического состояния объекта по его структурным параметрам (зазорам в подшипниковых узлах, в клапанном механизме, в верхних и нижних головках шатунов кривошипно-шатунного механизма, биению валов, размерам деталей, доступных для непосредственного измерения, и др.).

    Сборочные единицы и машину в целом диагностируют по структурным параметрам с помощью универсальных измерительных приборов: калибров, щупов, масштабной линейки, штангенциркулей, микрометров, зубометров, нормалемеров и др. Это позволяет получать точные результаты. Недостаток такого метода заключается в том, что он во многих случаях требует разборки объекта диагностирования. Последнее значительно увеличивает трудоемкость работ и нарушает приработку сопряженных поверхностей. Поэтому в практике прямое диагностирование, как правило, проводят в тех случаях, когда структурные параметры объекта диагностирования можно замерить без разборки сопряженных поверхностей.

    Косвенное диагностирование - это процесс определения фактического состояния объекта диагностирования по косвенным, или, как их называют, диагностическим параметрам.

    В качестве косвенных показателей используют изменение параметров рабочих процессов, структурных шумов, содержания продуктов износа в масле, мощности, расхода топлива и др.

    Сам процесс диагностирования проводят с помощью манометров, вакуумметров, пьезометров, расходомеров, пневматических калибраторов, дымомеров и различных специальных приборов.

    Система технического обслуживания и ремонта общепромышленного оборудования: Справочник Ящура Александр Игнатьевич

    3.3. Техническая диагностика оборудования

    3.3.1. Техническое диагностирование (ТД) – элемент Системы ППР, позволяющий изучать и устанавливать признаки неисправности (работоспособности) оборудования, устанавливать методы и средства, при помощи которых дается заключение (ставится диагноз) о наличии (отсутствии) неисправностей (дефектов). Действуя на основе изучения динамики изменения показателей технического состояния оборудования, ТД решает вопросы прогнозирования (предвидения) остаточного ресурса и безотказной работы оборудования в течение определенного промежутка времени.

    3.3.2. Техническая диагностика исходит из положения, что любое оборудование или его составная часть может быть в двух состояниях – исправном и неисправном. Исправное оборудование всегда работоспособно, оно отвечает всем требованиям ТУ, установленных заводом-изготовителем. Неисправное (дефектное) оборудование может быть как работоспособно, так и неработоспособно, т. е. в состоянии отказа.

    3.3.3. Оборудование может отказать в связи с изменением внешней среды и по причине физического износа деталей, находящихся как снаружи, так и внутри оборудования. Отказы являются следствием износа или разрегулировки узлов.

    3.3.4. Техническая диагностика направлена в основном на поиск и анализ внутренних причин отказа. Наружные причины определяются визуально, при помощи измерительного инструмента, несложных приспособлений.

    Методы, средства и рациональная последовательность поиска внутренних причин отказа зависят от сложности конструкции оборудования, от технических показателей, определяющих его состояние. Особенность ТД состоит в том, что она измеряет и определяет техническое состояние оборудования и его составных частей в процессе эксплуатации, направляет свои усилия на поиск дефектов.

    3.3.5. По величине дефектов составных частей (агрегатов, узлов и деталей) можно определить работоспособность оборудования. Зная техническое состояние отдельных частей оборудования на момент диагностирования и величину дефекта, при котором нарушается его работоспособность, можно предсказать срок безотказной работы оборудования до очередного планового ремонта, предусмотренного нормативами периодичности Системы ППР, а также необходимость их корректировки.

    3.3.6. Заложенные в основу ППР нормативы периодичности являются опытно усредненными величинами, установленными так, чтобы ремонтные периоды были кратными и привязанными к календарному планированию основного производства (год, квартал, месяц).

    3.3.7. Любые усредненные величины имеют свой существенный недостаток: даже при наличии ряда уточняющих коэффициентов они не дают полной объективной оценки технического состояния оборудования и необходимости вывода в плановый ремонт. Почти всегда присутствуют два лишних варианта: остаточный ресурс оборудования далеко не исчерпан, остаточный ресурс не обеспечивает безаварийную работу до очередного планового ремонта. Оба варианта не обеспечивают требование Федерального закона № 57-ФЗ об установлении сроков полезного использования основных фондов путем объективной оценки потребности его постановки в ремонт или вывода из дальнейшей эксплуатации.

    3.3.8. Объективным методом оценки потребности оборудования в ремонте является постоянный или периодический контроль технического состояния объекта с проведением ремонтов лишь в случае, когда износ деталей и узлов достиг предельной величины, не гарантирующей безопасной, безотказной и экономичной эксплуатации оборудования. Такой контроль может быть достигнут средствами ТД, а сам метод становится составной частью Системы ППР (контроля).

    3.3.9. Другой задачей ТД является прогнозирование остаточного ресурса оборудования и установления срока его безотказной работы без ремонта (особенно капитального), т. е. корректировка структуры ремонтного цикла.

    3.3.10. Техническое диагностирование успешно решает эти задачи при любой стратегии ремонта, особенно стратегии по техническому состоянию оборудования. В соответствии с этой стратегией работы по поддержанию и восстановлению работоспособности оборудования и его составных частей должны осуществляться на основе ТД оборудования.

    3.3.11. Техническое диагностирование является объективным методом оценки технического состояния оборудования с целью определения наличия или отсутствия дефектов и сроков проведения ремонта, в том числе прогнозирования технического состояния оборудования и корректировки нормативов периодичности ремонта (особенно капитального).

    3.3.12. Основным принципом диагностирования является сравнение регламентированного значения параметра функционирования или параметра технического состояния оборудования с фактическим при помощи средств диагностики. Под параметром здесь и далее согласно ГОСТ 19919-74 понимается характеристика оборудования, отображающая физическую величину его функционирования или технического состояния.

    3.3.13. Целями ТД являются:

    контроль параметров функционирования, т. е. хода технологического процесса, с целью его оптимизации;

    контроль изменяющихся в процессе эксплуатации параметров технического состояния оборудования, сравнение их фактических значений с предельными значениями и определение необходимости проведения ТО и ремонта;

    прогнозирование ресурса (срока службы) оборудования, агрегатов и узлов с целью их замены или вывода в ремонт.

    3.3.14. Прогнозирование периодичности текущего и, особенно, капитального ремонта оборудования возможно лишь при одновременном ТД всех или большинства его составных частей.

    3.3.15. Как показывает опыт, наиболее эффективное использование преимуществ ТД достигается тогда, когда на предприятии функционирует специальная задача «Диагностика оборудования», обеспеченная компьютерной техникой.

    Несмотря на большое разнообразие применяемых для диагностирования оборудования приборов, монтажных схем датчиков, их конструкторского исполнения и т. д., как показывает отечественный и мировой опыт, подходы к внедрению ТД в практику остаются общими. В Приложении 8 кратко рассмотрена методика и приведен один из общих способов организации ТД на предприятии, а в табл. 3.1 указан перечень диагностических устройств, имеющихся в специальных передвижных ремонтных мастерских.

    Таблица 3.1

    Перечень диагностических устройств, находящихся в передвижных ремонтных мастерских

    Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

    Академия наук (АН) СССР и советская научно-техническая элита АН СССР традиционно состояла из ученых, чьи профессиональные карьеры нередко подразумевали высокие посты либо в промышленных, либо в военных организациях. В силу данной особенности академики и

    Из книги Творчество как точная наука [Теория решения изобретательских задач] автора Альтшуллер Генрих Саулович

    Из книги Правила технической эксплуатации тепловых энергоустановок в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний автора

    2.8. Техническая документация на тепловые энергоустановки Вопрос 83. Какие документы хранятся и используются в работе при эксплуатации тепловых энергоустановок?Ответ. Хранятся и используются в работе следующие документы: генеральный план с нанесенными зданиями,

    Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

    Санитарно-техническая часть Вопрос. Какой системой вентиляции должны быть оборудованы помещения аккумуляторных батарей, в которых производится заряд аккумуляторов, при напряжении более 2,4 В на элемент?Ответ. Должны быть оборудованы стационарной принудительной

    Из книги Управление электрохозяйством предприятий автора Красник Валентин Викторович

    ГЛАВА 4 НОРМАТИВНО-ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ В ЭЛЕКТРОУСТАНОВКАХ 4.1. Техническая документация Наличие полной и качественной НТД в электроустановках является важной предпосылкой по организации и поддержанию надлежащего уровня электрохозяйства. Ее недооценка чревата

    Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

    4.1. Техническая документация Наличие полной и качественной НТД в электроустановках является важной предпосылкой по организации и поддержанию надлежащего уровня электрохозяйства. Ее недооценка чревата нежелательными последствиями.Вся система распределительных

    Из книги Ремонт японского автомобиля автора Корниенко Сергей

    Диагностика неисправностей рулевого управления и их устранение Повышенная передача но руль дорожных толчков при движении автомобиля. Вибрация и стуки, ощущаемые на рулевом колесе Диагностика элементов рулевого управления сводится к прослушиванию стуков при резких

    Из книги Система технического обслуживания и ремонта общепромышленного оборудования: Справочник автора Ящура Александр Игнатьевич

    Общая диагностика

    Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

    3.3. Техническая диагностика оборудования 3.3.1. Техническое диагностирование (ТД) – элемент Системы ППР, позволяющий изучать и устанавливать признаки неисправности (работоспособности) оборудования, устанавливать методы и средства, при помощи которых дается заключение

    Из книги Советы автомеханика: техобслуживание, диагностика, ремонт автора Савосин Сергей

    Техническая характеристика автомобиля ГАЗ-3110 седан Общие данныеЧисло мест (включая место водителя) – 5.Масса снаряженного автомобиля, кг – 1400.Габаритные размеры, мм:– длина – 4880.– ширина – 1800.– высота без нагрузки – 1455.Колесная база (расстояние между осями), мм

    Из книги BIOS. Экспресс-курс автора Трасковский Антон Викторович

    Сергей Савосин Советы автомеханика: техобслуживание, диагностика,

    Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

    2.3. Диагностика и техническое обслуживание Диагностика – греческое слово, означающее распознавание, определение признаков. Прежде чем приступить к ремонту автомобиля, необходимо провести его тщательную диагностику.Различают субъективную и объективную проверку

    Из книги автора

    3.2. Диагностика и техническое обслуживание Система электрооборудования автомобиля состоит из источника тока и различных потребителей, обеспечивающих зажигание рабочей смеси, освещение, сигнализацию и системы управления автомобилем. Как уже было сказано ранее,

    Из книги автора

    4.2. Диагностика и техническое обслуживание 4.2.1. Диагностика и техническое обслуживание сцепленияПри техническом обслуживании сцепления периодически проверяют и регулируют привод. Обслуживание начинают с проверки действия педали. Педаль по всему ходу должна двигаться

    Из книги автора

    Часть III Диагностика и устранение сбоев и неполадок

    Из книги автора

    51. Неорганические стекла. Техническая керамика Неорганическое стекло – химически сложные аморфные изотропные материалы, обладающие свойствами хрупкого твердого тела.Стекла состоят:1. Стеклообразователи – основа:а) Si02 – силикатное стекло, если Si02 > 99 %, то это

    Техническая диагностика является средством поддержания заданного уровня надежности, обеспечения требований безопасности и эффективности использования объектов. Техническое состояние объекта может быть характеризовано указанием дефектов, нарушающих исправное и работоспособное состояния, а также правильность функционирования и относящихся к деталям, узлам или к объекту в целом.

    Процесс определения технического состояния объекта в результате поиска и обнаружения дефектов с указанием при необходимости места, вида и причины дефектов называется техническим диагностированием. Традиционное определение технического состояния объекта предполагает остановку и разборку оборудования. Это связано со значительными затратами времени и средств, а также с нарушением сопряжений деталей, что резко увеличивает износ сопряжения и снижает долговечность.

    Обнаружение дефекта обычно производится с помощью штатных контрольно-измерительных приборов и особых (диагностических) технических средств и базируется на контроле и (или) особых испытаниях (тестах). Применение средств технического диагностирования, позволяющих определить техническое состояние объекта и его остаточный ресурс без разборки на детали, а возможно, и без выключения из работы, по параметрам, как рабочих процессов, так и сопутствующих работе, может повысить эффективность эксплуатации объекта в результате снижения затрат ресурсов на техническое обслуживание и ремонт вследствие сокращения объема работ, количества расходуемых запасных частей и материалов, повышения уровней надежности, поскольку нет периодически проводимых сборочно-разборочных операций, снижающих долговечность объекта, и безопасности.

    Типовая структура системы технического диагностирования (т. е. совокупности технических средств и объекта диагностирования, а иногда и исполнителей) в простейшем варианте включает: диагностические датчики, воспринимающие диагностическую информацию от объекта; преобразователи, которые преобразуют сигналы от датчиков в унифицированный вид, удобный для обработки; устройства обработки информации и устройства вывода информации.

    Системы диагностирования подразделяют: по степени общности даваемой информации - на локальную и общую; по характеру взаимодействия с объектом - на тестовую и функциональную. Локальное диагностирование служит для оценки технического состояния отдельных узлов и деталей, а общее диагностирование - главным образом объекта в целом. Тестовая система формирует воздействие, подаваемое на проверяемый объект с целью получить от него ответную информацию. Функциональная система регистрирует информацию о состоянии объекта в процессе его функционирования. Системы диагностирования предназначаются для решения следующих задач: проверка исправности, работоспособности и функционирования; поиск дефектов.

    Системы технического диагностирования применяют при техническом обслуживании, т. е. при использовании по назначению, перед и после использования; а также при ремонте, перед ремонтом для уточнения объема работ и после ремонта для оценки качества.

    Работа холодильных объектов обычно сопровождается сопутствующими процессами (теплообменом, массообменом, вибрацией и др.), параметры которых отражают техническое состояние объекта и содержат необходимую для диагностирования информацию. Такие параметры называют диагностическими параметрами; они являются физическими величинами и могут быть непосредственно измерены на работающем или неработающем объекте. Например, компрессор как объект диагностирования можно представить в виде комплекса узлов и деталей, состояние которых отражается диагностическими параметрами: режима работы (температура, давление); функционирования (холодопроизводительность, расход масла и электроэнергии); сопутствующих процессов (характеристики виброакустических сигналов, массовая доля примесей в масле); геометрическими (размер, зазор, биение).

    Характеристики виброакустических сигналов (спектр, энергия, функция временного развития), отражающие ударные взаимодействия в кинематических нарах поршневых компрессоров небольшой холодопроизводительности, являются основой системы диагностики, посредством которых определяют зарождающиеся дефекты, текущие зазоры, предельно допустимые износы. Состояние сред, контактирующих с объектом, также дает определенную информацию. Например, смазочное масло всегда содержит частицы материала трущихся поверхностей. Их массовая доля характеризует интенсивность изнашивания поверхностей. Так, использование метода спектрального анализа проб смазочного масла позволяет выявить концентрацию всех металлов, присутствующих в масле, и определить скорость изнашивания даже отдельных сопряжений, если они изготовлены из различных материалов. Присутствие хладагента в воздухе помещения, хладоносителе, охлаждающей воде свидетельствует о наличии течей. Методы высокочастотной акустики применяют для определения трещин в стенках аппаратов, трубопроводов, кавитации в насосах, течей в соединениях.

    Закономерности изменения диагностических параметров во времени, как правило, аналогичны закономерностям изменения параметров технического состояния объектов. В процессе работы диагностические параметры изменяются от начального значения до предельно допустимого за некую наработку. Измеряя текущее значение диагностического параметра и сравнивая его с признаками эталонного состояния объекта, можно установить техническое состояние объекта в данный момент и прогнозировать его последующее состояние. Номенклатуру диагностических параметров, допустимые и предельные значения, по которым определяют и прогнозируют техническое состояние объектов, устанавливают заводы-изготовители и указывают в НТД. Обычно для диагностического заключения требуется анализировать большое количество диагностических параметров. Поэтому для сложных объектов создают автоматизированные системы диагностики, выполняемые на базе ЭВМ.

    В общем случае для создания автоматизированной системы технического диагностирования необходимо решить следующие взаимосвязанные задачи. Разработать математическую модель функционирования объекта диагностирования, позволяющую проверять работоспособность и правильность функционирования по совокупности диагностических параметров. Создать математическую модель повреждений и отказов, дающую возможность обнаруживать повреждения и отказы, выявлять причины их возникновения. Построить алгоритмы диагностирования, что достигается выбором такой совокупности элементарных проверок, по результатам которых можно: в задачах обнаружения повреждений и отказов отличить исправное или работоспособное состояние либо состояние правильного функционирования от его неисправных состояний, а в задачах поиска повреждений и отказов различать неисправные и неработоспособные состояния между собой.

    Для решения перечисленных задач применяют различные математические модели. Так, при создании моделей, позволяющих проверять работоспособность и правильность функционирования, используют системы линейных и нелинейных уравнений. Для построения моделей повреждений и отказов используют топологические модели в виде деревьев отказов и графов причинно-следственных связей между техническими состояниями и диагностическими параметрами. Модели объектов диагностирования являются основой для построения алгоритмов диагностирования. Построение алгоритмов диагностирования состоит в выборе такой совокупности проверок, по результатам которых можно отличить исправное, работоспособное состояние или состояние функционирования от им противоположных состояний, а также различать виды дефектов между собой. С техническим диагностированием связана задача прогнозирования технического ресурса объекта. Алгоритм технического диагностирования служит основой для создания автоматизированной системы технической диагностики.