Мой бизнес - Франшизы. Рейтинги. Истории успеха. Идеи. Работа и образование
Поиск по сайту

Продукция микробиологической промышленности. Микробиологическая промышленность - это

О.В.Мосин

Любое производство начинается с сырья. Общий объем биотехнологической продукции в мире измеряется в миллионах тонн в год. В микробиологической промышленности наибольшая доля сырья (более 90 %) идет на производство этанола. Производство хлебо­пекарных дрожжей требует 5 % расходуемого в микробиологиче­ской промышленности сырья, антибиотики - 1,7 %, органические кислоты и аминокислоты - 1,65 %.

Ферментная биотехнология является крупным потребителем крахмала, так как только одной фруктозной патоки производится свыше 3,5 млн в год. С точки зрения экономики, сырье в биотехнологических производствах, особенно в крупнотоннажных, занимает первое место в статьях расходов и составляет 40-65 % общей сто­имости продукции (рис. 4.1). При тонком биосинтезе доля сырья в общей себестоимости продукции уменьшается.

Питательный субстрат, или питательная среда, является сложной трехфазной системой, содержащей жидкие, твердые и газооб­разные компоненты. Много ферментов расположено на поверхно­сти клетки или выделяется в окружающую среду. Кроме того, зна­чительная часть продуктов биосинтеза после экскреции из клеток накапливается в среде. Некоторые промежуточные метаболиты служат резервным питательным фондом, которым клетка пользует­ся после истощения основных источников питания. Существует тесное взаимодействие между культивируемым биообъектом и фи­зико-химическими факторами среды. С одной стороны, эти факто­ры (рН, осмотическое давление и др.) контролируют рост клеток и биохимическую активность продуцентов. С другой сторо­ны, химический состав и физико-химические свойства среды посто­янно меняются в результате жизнедеятельности самих клеток. Эти обсто­ятельства заставляют рассматривать ферментируемый субстрат как продолжение внутренней среды клетки. Во время ферментации формируется совокупность субстрата и биообъекта.

Сырье для микробиологической промышленности Сырьевые ресурсы Земли

В принципе, микроорганизмы способны ассимилировать любое органическое соединение, поэтому потенциальными ресурсами для микробиологической биотехнологии могут служить все мировые запасы органических веществ, включая первичные и вторич­ные продукты фотосинтеза, а также запасы органических веществ в недрах Земли.

Но, к сожалению, каждый конкретный вид микроорганизмов, используемый в биотехнологии, весьма избирателен к питательным веществам, и органическое сырье (кроме лактозы, сахарозы и крахмала) без предварительной химической обработки малопригодно для микробного синтеза. Тем не менее целлюлозосодержащее сырье после химического или ферментативного гидролиза и очистки от ингибирующих или балластных примесей (фенол, фур­фурол, оксиметилфурфурол и др.) может быть использовано в био­технологическом производстве. Каменный уголь, природный газ и древесина могут служить сырьем для химического синтеза техниче­ских спиртов или уксусной кислоты, а последние, в свою очередь, являются отличным сырьем для микробиологической промышлен­ности..

Из органического сырья наибольшее внимание биотехнологов привлекает крахмал, хотя для его ассимиляции микроорганизмами требуется сложный комплекс амилолитических ферментов, которым владеют только некоторые виды микроорганизмов (например, грибы рода Aspergillus, бактерии Вас. subtilis и др.)- Много крах­мала расходуется для производства этанола, а также для изготов­ления фруктозных сиропов. Из-за того, что мировые запасы крахмалосодержащего в нашей стране ограничены, целесообразно использовать для целей биотехнологии мелассу, глюкозное сырье, метанол и этанол.

При выборе сырья учитывают не только физиологические потребности выбранного продуцента, но и стоимость сырья (табл. 1).

Таблица 1. Стоимость основного микробиологического сырья

Традиционные источники углерода

Углеродсодержащее сырье является основным сырьем микробного синтеза. Наиболее широко применяемые в производственных условиях источники углерода перечислены в табл. 2. Большинство микроорганизмов хорошо ассимилирует углеводы. При катаболизме большое значение имеют строение углеродного скелета молекул (прямой, разветвленный или циклический) и степень окисления углеродных атомов. Легкодоступными счита­ются сахара, особенно гексозы, за ними следуют многоатомные спирты (глицерин, маннит и др.) и карбоновые кислоты.

До недавнего времени существовало мнение, что органические кислоты малодоступны для большинства микроорганизмов, однако на практике довольно часто встречаются микроорганизмы, успешно утилизирующие органические кислоты, особенно в анаэробных условиях.

Низкомолекулярные спирты (метанол, этанол) можно отнести к числу перспективных видов микробиологического сырья, так как их ресурсы существенно увеличиваются благодаря успешному развитию технологии химического синтеза. Многие дрожжи родов Candida, Hansenula, Rhodosporidium, Endomycopsis и др. способны ассимилировать этанол. Дрожжи родов Pichia, Candida, Torulopsis и др. и бактерии, принадлежащие родам Methy-lomonas, Protaminobacter, Flavobacterium и др., используют в качестве единственного источника углерода метанол и образуют биомассу с высоким содержанием белков (60-70%).

В 1939 г. В. О. Таусоном была установлена способность разных видов микроорганизмов использовать в качестве единственного источника углерода и энергии н-алканы и некоторые фракции нефти. Отличительной особенностью углеводородов по сравнению с другими видами микробиологического сырья являет­ся низкая растворимость в воде. Этим объясняется тот факт, что только некоторые виды микроорганизмов в природе способны ассимилировать углеводороды. Максимальная растворимость н-алканов в воде около 60 мл/л при длине молекул от С2 до С4, но при увеличении цепи растворимость снижается.

Таблица 2. Источники углерода, применяемые для микробного синтеза

Субстрат

Характеристика

Кристаллическая глю­коза

Техническая сахароза Техническая лактоза

Крахмал Уксусная кислота

Спирт этиловый синте­тический

Узкая фракция жид­кого парафина

99,5 %

Сахарозы не менее

Лактозы не менее

РВ не менее 70 % в пересчете на СВ

СВ не менее 80 %

Уксусной кислоты не менее 60 % Этанола не менее 92%

н-Алканов 87-93 %

Содержит до 9 % воды, до 0,07 % зольных веществ, в том числе же­леза не более 0,004 % Влажность до 0,15 %, зольных ве­ществ не более 0,03 % Влажность до 3 %, зольных ве­ществ не более 2 % и 1 % молоч­ной кислоты

Сиропообразная жидкость, РВ представлены главным образом глюкозой, зольных веществ до 7 %, рН 4,0

Зольных веществ Q.-35-1,2 % в пе­ресчете на СВ (Содержит формальдегид и до 1,0 % муравьиной кислоты Содержит до 0,21 % изопропилового спирта и до 15 мг/л органиче­ских кислот

Содержит до 0,5 % ароматических углеводородов и до 0,5 % серы

Побочные продукты производства

Многие ценные виды побочной продукции раньше считались отходами производства. В канализацию спускали воду после замачива­ния кукурузных зерен при их переработке в крахмал и глюкозу. Теперь эту воду упаривают, получая экстракт, и используют в микробиологической промышленности. Успешно используют отхо­ды химического производства (смесь карбоновых кислот - ян­тарной, кетоглутаровой, адипиновой) и др.; сульфитный щелок, зерновую и картофельную барду, мелассу, гидрол и т. д.

Таблица.3. Химический состав свекловичной мелассы

Наименование

Наименование

Сухое вещество 75-77

Зольность 6,6 - 7,5

Сахароза 45

в том числе:

Инвертный сахар 0,5 - 1,2

К 2 О 2,5-3,5

Раффиноза 0,5-1,0

Сбраживаемые са- 46 - 48

50 СаО 0,5-0,8

хара (суммарное

количество)

общий 1,1 - 1,5

Коллоиды 3 - 4

Доброкачествен- 62 - 65

65 до гидролиза 0,2-0,35

после гидро- 0,5 - 0,6

Лизин 41 Алании

Гистидин 24 Цистин

Аргинин 26 Валин

Аспарагиновая кислота 251 Метионин

Треонин 41 Изолейцин

Следы 89 120

Комплексное использование всей побочной продукции производства далеко от совершенства. В нашей стране ежегодно оста­ется неиспользованной или нерационально используется около 1 млн т лактозы, содержащейся в сыворотке и пахте. В США из всего количества молочной сыворотки, образующейся при про­изводстве сыра (ежегодно 20 млн т), половина теряется со сточными водами. В то же время известно, что из 1 т сыворотки мож­но получить около 20 кг сухой биомассы дрожжей. Кроме того, из сепарированной бражки можно выделить допол­нительно около 4 кг протеина. Нерационально используется кар­тофельный сок, выделяемый из картофеля при производстве крахмала, а также альбуминное молоко, получаемое из сыворотки.

В микробиологической промышленности широко применяются меласса и гидрол - побочный продукт производства глюкозы из крахмала. Меласса характеризуется высоким содержанием сахаров (43-57%), в частности сахарозы (табл. 3).

В микробиологической промышленности используется ряд других побочных продуктов (табл. 4). В дальнейшем необходи­мо учесть потенциальные возможности постоянно возобновляю­щихся сырьевых ресурсов - первичных продуктов фотосинтеза, в первую очередь гидролизатов древесины и депротеинизированного сока растений.

Таблица 4. Побочные продукты, используемые в микробиологической промышленности в качестве основного сырья

Сульфитный щелок Картофельная барда Зерновая барда

Солодовое сусло Молочная сыворотка

Депротеинизирован-ный сок растений

Депротеинизирован-ный картофельный сок

Гкдролизат древесных отходов

торфа

Гидролизат (упаренный)

Пшеничные отруби

СВ 4,0-4,5 %, в том числе РВ 3,3-3,5 % СВ 4,3-4,5 %, в том числе РВ 2,0-2,2 % СВ 7,3-8,1 %, в том числе РВ 2,5-2,9 % СВ 76-78 %, в том числе сбраживаемых Сахаров 50%

СВ 15-20 %, в том числе РВ (мальтоза, декстрины) 8-12 %, витамины СВ 6,5-7,5 %, в том числе лактозы 4,0-4,8 %, белков 0,5-1,0%, жиров 0,05- 0,4 %, витамины СВ 5-8 %, в том числе РВ 0,8-2,0 %, аминокислоты, витамины

СВ 4-5 %, в том числе РВ 0,5-1,0 %, витамины, ами­нокислоты

СВ 6-9 %, в том числе РВ 3-4 %, органических кис­лот 0,3-0,4 % СВ 48-52%, в том числе РВ 26-33 % (галактоза, глюкоза, манноза, ксилоза, рамноза); гуминовые веще­ства

СВ 90-92 %, в том числе экстрактивных веществ 48-50%, крахмала 25- 30%, белков 11 - 13%, жиров 2,5-3,0 %, целлю­лозы 15-17 %

кормовых

Производство

дрожжей То же

Производство дрожжей, антибиотиков, этанола

Выращивание дрожжей, бактерий, микромицетов

Получение дрожжей, эта­нола, лактанов

кормовых

Выращивание дрожжей

Производство хлебопекар­ных дрожжей, антибиотиков

Получение кормовых дрож­жей

Производство ферментов

Источники минерального питания

Азот. В бактериальных клетках азота до 12 % в пересчете на сухую биомассу, в мицелиальных грибах - до 10%. Микроорганизмы могут использовать как органические, так и неорганиче­ские источники азота. Известно, что бактерии более требователь­ны к источникам азота, чем большинство микромицетов, актиномицетов и дрожжей. У клеток животных и растений особые тре­бования к источникам азота. Продуктивность по биомассе в за­висимости от источника азота не всегда совпадает с продуктив­ностью целевого метаболита и зависит также от условий культи­вирования (табл. 5). При выращивании биомасс

Таблица 5. Влияние минеральных источников азота на рост биомассы и биосинтез лимонной кислоты мутантом A . niger при поверхностном и глубинном культивирования (Р. Я- Карклиньш)

Источник азота

Поверхностное культивиро­вание

Глубинное культивиро­вание

Лимонная кислота, г/л

Лимонная кислота, г/л

(NH,) 2 SO 4 6,2 (NH 4) 2 HPO 4 4,2 NH 4 C1 5,5 KNO 3 5,0

12 15 14 11 9 15

95 101 30 30 88

Ca(NO 3) 2 3,5 NH.CONHs 6,9

в концентрации 30-40 г/л потребность в добавках азотсодержащих солей обычно не превышает 0,3-0,4 % от объема среды. В периоди­ческих режимах культивирования потребление азота заканчива­ется в первые 6-12 ч роста (в первой половине экспоненциаль­ной фазы). При направленном биосинтезе азотсодержащих мета­болитов потребность в азоте существенно возрастает.

Большинство дрожжей хорошо усваивает аммиачные соли -сульфат аммония, фосфат аммония, а также аммиак из водного раствора. Соли азотной кислоты не всегда хорошо усваиваются. Только некоторые виды дрожжей испытывают потребность в нитратах. Часто источником азота в состав сред включают мочевину. При направленном биосинтезе, например, целлюлолитических ферментов грибом Peniophora gigantea наивысшая биохимиче­ская активность клеток наблюдается на средах с органическим азотом (аспарагин, пептон и др.).

Другие минеральные соли. Фосфор, как известно, входит в состав нуклеиновых кислот, фосфолипидов и других важных компонентов клетки. Иногда фосфор накапливается в ней в виде полифосфатов. Небольшая часть усвоенного фосфора существует в форме макроэргических соединений - АТР.

Фосфор является важным компонентом клетки. Микроорганизмы нуждаются еще в 10 минеральных элементах, но в значи­тельно меньших количествах (10~ 3 - 10~ 4 М). Повышенная по­требность микроорганизмов в микроэлементах возникает, если целевой метаболит содержит микроэлемент. Так, при биосинтезе витамина В]2 в состав питательной среды включают кобальт; молибден и бор стимулируют биосинтез тиамина в клетках клубеньковых бактерий; медь присутствует в ряде ферментов, перенося­щих электроны от субстрата к кислороду.

Минеральный состав питательной среды формирует распределение электрических зарядов на поверхности клеток. Обычно клетки микроорганизмов имеют отрицательный потенциал (16- 20 мВ). При добавлении в среду электролитов он снижается, и тем сильнее, чем выше валентность добавляемого противоиона. Увеличение содержания К + или Na + до 500 мг/л уменьшает величину потенциала клеток до 10-12 мВ. Введение в среду 60- 80 мг/л Са 2+ , Fe 2+ или Си 2+ , равно как и 5 мг/л Аl +3 , может привести клетки в электронейтральное состояние. В отличие от бактерий дрожжи и мицелиальные грибы не перезаряжаются и не приобретают положительный потенциал. Изменение электриче­ского потенциала клеток может изменить их физиологическую деятельность, воздействовать на селективность клеточной мем­браны, вызвать флокуляцию или флотацию клеток.

Комплексные обогатители сред

Микроорганизмы лучше растут в присутствии витаминов, аминокислот, цитокининов и других биологиче­ски активных веществ. С наступлением эры антибиотиков и в связи с широким применением микроорганизмов в промышленно­сти остро встал вопрос об экономически оправданных, сбаланси­рованных по составу питательных средах. Эффективной добавкой оказался кукурузный экстракт благодаря наличию в нем витами­нов, аминокислот и минеральных элементов в легко ассимилиру­емых формах. Химический состав кукурузного экстракта приве­ден ниже.

Алании 24-59 Метионин 2-6

Аргинин 10-24 Фенилаланин 8-13

Аспарагиновая кислота 10-27 Пролин 16-20

Цистин 2-4 Серии 12-20

Глутаминовая кислота 35-88 Треонин 4-II

Глицин Следы Тирозин 5-10

Гистидин 2-4 Триптофан 5-10

Изолейцин 35-42 Валин 8-18

Лейцин 27-42 Лизин 16-37

Рибофлавин 7-12 Биотин 15-55

Тиамин 80-100 Никотиновая кислота 120-180

Пантотеновая кислота 80-140

Для получения высококачественных и безопасных продуктов детского питания в промышленных условиях необходим микробиологический и санитарно-гигиенический контроль производства на всех этапах.

      1. Микробиологический контроль производства жидких и пастообразных молочных продуктов для детского питания.

Микробиологический контроль включает следующие этапы:

    контроль сырья (не реже 1 раза в декаду);

    контроль компонентов – каждая партия;

    контроль технологического процесса производства (не реже 1 раза в декаду);

    контроль эффективности пастеризации молока, сливок и нормализованной смеси;

    контроль производства качества заливок;

    контроль санитарно-гигиенического состояния производства и рук работников;

    контроль воды и воздуха (не реже 1 раза в месяц);

    контроль качества тары и упаковочных материалов;

    контроль готовой продукции.

Контроль эффективности пастеризации молока, сливок и нормализованной смеси.

Контроль эффективности пастеризации осуществляется ежедневно вне зависимости от качества готового продукта.

Показателем эффективности пастеризации является отсутствие в 1мл молока бактерий группы кишечных палочек (БГКП), а также к МАФАМ – общего количества бактерий в 1мл молока – не более 10000.

Если установлено, что результаты анализов исследуемого продукта не соответствуют нормативам, то есть эффективность пастеризации недостаточная, то пастеризационная установка останавливается для выяснения причин снижения эффективности пастеризации.

И только при получении устойчивых результатов анализов исследуемого продукта осуществляют запуск пастеризатора.

Контроль производства качества закваски.

Молоко предназначенное для закваски должно соответствовать требованиям по редуктазной пробе.

Эффективность пастеризации молока для производства заквасок, так же проверяемой на наличие БГКП. Эффективность тепловой обработки молока, стерилизованного в колбах или бутылках, предназначенного для закваски контролируют стерильность (КМАФАМ). Ежедневно проверяют количество закваски, сгустка и запах по следующим показателям: наличие посторонней микрофлоры, кислотности и время сквашивания.

Микробиологический контроль готового продукта.

Микробиологический контроль готовых продуктов детского питания также включает определение следующих показателей: содержание КМАФАМ, дрожжей и плесневых грибов, БГКП (колиформы), E. Coli, B.cereus, S. aureus, патогенных микроорганизмов, в том числе Salmonella. В продуктах, содержащих специфическую микрофлору, контролируют ее титр.

В производственных лабораториях предприятий производящих продукты без термообработки (адаптированные смеси) контролируют каждую партию продуктов по всем показателям.

В продуктах, употребляемых после термической обработки (молочные каши и др.) контролируют каждую партию на содержание КМАФАМ, БГКП, дрожжей и плесневых грибов.

Контроль на содержание B.cereus и S. aureus в сухих, жидких и пастообразных, готовых продуктах проводят периодически, не реже 1 раза в месяц.

Контроль санитарно-гигиенического состояния производства и рук работников.

К санитарно-гигиеническому состоянию производства продуктов детского питания предъявляются повышенные требования.

Все участки оборудования, аппаратуры и молокопроводы должны контролироваться не менее 3-х раз в месяц на БГКП.

Качество мойки оборудования оценивается по КМАФАМ в смывах, не реже 2-3 раз в неделю.

Чистоту рук (хлорирование) работников контролируют не реже 3-х раз в месяц.

Оценка результатов контроля санитарно-гигиенического состояния производства. Один раз в декаду исследуют пробу смыва с оборудования (с 100 см 2) следующих линий:

    линии сырого молока и не пастеризованных компонентов;

    линии стерилизованного молока;

    линии кисломолочной продукции (включая резервуары) и т.д.

При наличии 100 бактерий в 1мл слива мойку считают неэффективной. Ежедневно исследуют пробы (100 см 2) на фасовочных автоматах, в резервуарах и трубах для закваски.

Одежду и руки работников заквасочного отделения проверяют один раз в декаду на наличие БГКП.

Контроль виды и продукты.

Питьевая вода, используемая на бытовые и производственные нужды исследуется на баканализ не реже 1 раза в месяц. Согласно НД коли-индекс не должен превышать 3 в 1мл воды.

В воздухе производственных помещений определяют общее количество бактерий, количество дрожжей и плесневых грибов не реже 1 раза в месяц.

Контроль тары и упаковки и материалов.

На предприятиях в целях контроля тары и упаковочных материалов проводят анализы на содержание КМАФАМ и БГКП. Содержание КМАФАМ на 100см 2 тары должно быть не более 50 КОЕ, при отсутствии БГКП.

1) Микроорганизмы использовались человечеством в быту и производстве еще задолго до того как, собственно говоря, они были открыты. Еще в древние времена, не задумываясь об их существовании человечество, использовало их в хлебопечении, виноделии, производстве сыров и кисломолочных продуктов, пивоварении и т.д.

Значение и роль их для производства впервые были открыты Пастером в середине 19 века. Однако знания по физиологии микроорганизмов и закономерностям их роста начали пополняться, только начиная с 20 века.

В результате появилась реальная возможность сделать микроорганизмы неисчерпаемым источником получения биологически активных веществ: белков, аминокислот, ферментов, витаминов, антибиотиков и т.д.

Во второй половине 20 века в промышленно развитых странах зарождается новая отрасль промышленности – микробиологическая промышленность или биотехнология.

Основное преимущество биотехнологии – получение белковых веществ и др. продуктов путем микробного синтеза со огромной скоростью, которая на несколько порядков выше, чем у растений и животных.

Развитие промышленности вызывает потребность в специалистах, технологии, оборудовании и само по себе, разумеется, в соответствующих научных исследованиях.

Данное УМКД написано на основе курса лекции «Оборудование биотехнологии», который на протяжении ряда лет, начиная с 90-х годов, читался авторами в Семипалатинском государственном университете имени Шакарима для студентов-биотехнологов.

2) Биотехнология, биотехнологическая промышленность, оборудование биотехнологии – сравнительно новые термины, которые вошли в практику сравнительно недавно (70 – 80 – 90 годы 20 века).

До этих лет более широко использовался термины:

· микробиология и микробиологическая промышленность,

· а также соответствующее оборудование.

Основная цель биотехнологии –

· производство методами микробиологического синтеза, прежде всего, биологически активных веществ,

· и других продуктов микробиологического производства, например:

Концентрата витамина В 2 ;

Белково-витаминных концентратов;

Кормовых дрожжей на жидких гидролизатах растительных материалов и сульфитных щелоках;

Кормовых дрожжей на отходах пищевой промышленности;

Кормовых дрожжей на очищенных парафинах;

Кормовых дрожжей на газообразных углеводородах;

Лимонной кислоты;

Лизина на свекловичной мелассе, а также других аминокислот, в частности гистидина, аргинина, триптофана и др;

Кормовых антибиотиков (препараты биовит, терравит, бацелихин, бацитрацин и др);

Бактериальных препаратов или удобрений, а также средств защиты растений (нитрагин, азотобактерин, фосфобактерин и др);

Ферментных препаратов;

Солода и т.п.

Для популяции микроорганизмов характерны такие замечательные свойства как:

Высокая интенсивность жизнедеятельности, т.е. роста, размножения и отмирания;

И большое своеобразие обмена веществ (метаболизма).

Например, скорость образования биомассы у микроорганизмов:

В почти, что в 500 раз больше чем у самых урожайных растений;

И в примерно 1000 – 5000 раз больше чем у самых продуктивных пород скота.

За всего лишь каких-нибудь 0,3 – 2,0 часа биомасса микроорганизмов может увеличиться вдвое.

Кроме того, в ряде случаев вся биохимическая активность микроорганизмов направляется на синтез какого-нибудь полезного вещества. Например:

Один из высокопродуктивных мутантов для синтеза пенициллина образует до 0,5 кг пенициллина на каждый 1,0 кг биомассы;

Некоторые из штаммов могут синтезировать витамин В 12 в количествах превышающих их жизненные потребности в 100 – 200 раз.

Одним из главных достоинств биотехнологии является то, что при микробиологическом синтезе используется:

Не дефицитное, не дорогое сырье в виде отходов пищевой промышленности,

А также такое широко распространенное сырье как нефть и природный газ.

3) Используемое в биотехнологии оборудование, классифицируется на соответствующие группы по ряду основных признаков. К таким признакам относятся.

I. Характер воздействия на обрабатываемый материал, либо сырье или продукт.

II. Структура рабочего цикла машины или аппарата.

III. Степень механизации и автоматизации.

IV. Принцип сочетания в технологическом потоке.

V. Функциональное (производственное) назначение.

I. По характеру воздействия на обрабатываемый продукт оборудование делится на три группы:

а) оборудование, в котором на материал оказывается механическоевоздействие без изменения свойств самого материала (т.е. изменяется только форма и размеры продукта, например при измельчении, дроблении или резании);

б) оборудование, в котором на материал оказывается физико-химические, биохимические и тепловые воздействия в результате чего изменяются большинство свойств сырья и даже агрегатное состояние (т.е. изменяется вязкость, плотность, структура и т.д. например, при выпарке, концентрации, экстракции, сушке и т.п.);

в) оборудование, в котором на материал оказываются все виды воздействия.

II. По структуре рабочего цикла оборудование делится на две группы:

а) оборудование периодического действия;

б) оборудование непрерывного действия.

III. По степени механизации и автоматизации оборудование делится на три группы:

а) простые рабочие машины и аппараты (т.е. оборудование, в котором выполняется одна технологическая операция, например дробилка, мешалка, сепаратор и т.п. выполняют, несмотря на свою в некоторых случаях конструктивную сложность только одну технологическую операцию):

б) машины полуавтоматы (т.е. оборудование, в котором имеется несколько рабочих органов выполняющих несколько технологических операции и в котором требуется участие рабочего для выполнения некоторых контрольных функций).

в) машины автоматы (т.е. оборудование, в котором также имеется несколько рабочих органов выполняющих несколько технологических операции в автоматическом режиме и в котором не требуется участие рабочего).

IV. По принципу сочетания в потоке

а) отдельные машины и аппараты;

б) агрегаты или комплексы;

в) комбинированные и автоматизированные виды оборудования (это прежде всего поточно-механизированные линии)

Машины и аппараты отличаются друг от друга по структурной форме. Машина, как правило, состоит из трех частей:

Рабочего органа установленного внутри рабочей камеры;

Передаточного механизма, передающего движение рабочему органу;

И источника движения, т.е. двигателя.

Таким образом, в машине обработка сырья происходит в результате преобразования в движение механической работы двигателя.

V. По производственному назначению оборудование делится на большое количество групп, а именно:

Для проведения вспомогательных и подъемно-транспортных операций по доставке, хранению, дозированию сырья и материалов;

Для стерилизации питательных сред и воздуха;

Для экстрагирования, отжима, фильтрования и флотации;

Для культивирования (т.е. выращивания) микроорганизмов на твердых питательных средах;

Для культивирования микроорганизмов на жидких питательных средах;

Для разделения жидкой и твердой фаз из неоднородных систем (т.е. центрифуги и сепараторы);

Для концентрирования и очистки растворов биологически активных веществ (т.е. вакуум-выпарные установки);

Для мембранного разделения растворов биологически активных веществ(т.е. ультрафильтрационные установки);

Для сушки продуктов микробиологического производства;

Для измельчения, стандартизации, гранулирования и микрокапсулирования продуктов микробиологических производств.

Лекция № 2. Машинно-аппаратурные схемы производства продуктов микробиологического синтеза.

План лекции:

1) Особенности технологии микробиологических производств.

2) линия производства солода.

3) линия производства этилового ректификационного пищевого спирта.

4) линия производства хлебопекарных дрожжей.

5) технологическая линия производства ферментных препаратов.

1) Типовой технологический процесс микробиологического синтеза может быть представлен в виде следующих последовательных стадий:

Приготовление посевного материала;

Приготовление и стерилизация питательной среды;

Культивирование, т.е. микробиологический синтез;

Выделение целевого продукта;

Помол (измельчение);

Стандартизация;

Фасовка.

В отдельных случаях некоторые из этих стадий могут отсутствовать.

В частности,

– если готовый продукт выпускается в жидком виде,

– то отсутствуют операции сушки и измельчения.

Основной стадией микробиологического синтеза является культивирование.

Культивирование есть ни что иное, как развитие популяции микроорганизмов в специальном аппарате, который называют ферментатором.

При этом в аппарате имеет место в большей части жидкая питательная среда.

Это так называемый глубинный (суспензионный) способ культивирования.

На стадии культивирования осуществляется производство:

Во-первых, как самой биомассы;

Так и, во-вторых, продуктов жизнедеятельности (метаболизма).

В ряде случаев – синтезируемые продукты – антибиотики, ферменты, аминокислоты и т.п.

Необходимость осуществления специфических процессов повлекла за собой разработку и создание специального оборудования, которое будет рассматриваться в данном курсе.

2) Солод − проращенное зерно злаковых культур (ячмень, рожь, рис, пшеница, овес, просо) в специально созданных и регулируемых условиях.

Солодоращение − накопление в зерне максимально возможного или заданного количества ферментов (в основном гидролитических).

Под действием ферментов при солодоращении часть сложных веществ зерна превращается в мальтозу, глюкозу, мальтодекстрины и высшие декстрины, лептоны, лептиды, аминокислоты и др.

Солод используют при производстве

· пива, полисолодовых экстрактов, получаемых из смеси кукурузного, овсяного и пшеничного солодов,

· концентрата квасного сусла, хлебного кваса,

· безалкогольных напитков, этилового спирта

· хлебобулочных изделий.

Приготовление солода - сложный комплекс специфических процедур, состоящий из следующих стадий:

Очистка и сортировка зерна;

Мойка, дезинфекция и замачивание ячменя;

Проращивание ячменя (свежепроросший солод для производ-ства спирта и ферментации);

Сушка солода;

Обработка сухого солода (солод для производства хлебобулоч-ных изделий, солодовых экстрактов и концентрата квасного сусла);

Выдержка сухого солода (выдержанный солод для производства пива).

Характеристика комплексов оборудования. Линия начинается с комплекса оборудования, состоящего из зерноочистительных и сортирующих машин - воздушных и зерновых сепараторов, цилиндрических и дисковых триеров, магнитных сепараторов.

Следующий комплекс линии включает аппараты для мойки и за­мачивания ячменя. К ним относятся моечные и замочные аппараты, входящие в комплекс замочного отделения, а также установки непре­рывного замачивания зерна.

Ведущий комплекс линии состоит из оборудования для солодора­щения, представленного

· ящичными солодорастильными установками,

· солодовнями с передвижной грядкой,

· статическими солодовнями с совмещенным способом,

· солодорастильными барабанами и кондиционерами для пнев­матических солодовен.

Наиболее значимым комплексом оборудования линии является оборудование для сушки солода.

К нему относятся:

· сушилки периодического действия (горизонтальные и верти­кальные)

· и сушилки непрерывного действия (шахтные и сельные) с то­почными устройствами и калориферами.

Завершающий комплекс оборудования линии обеспечивает обра­ботку сухого солода и содержит

· росткоотбойные, солодополировочные машины и измельчители солода.

3) Спирт этиловый (этанол, винный спирт), выработанный из пищевых видов сырья (зерно, картофель, сахар, свеклосахарная и тростниковая меласса, сахарная свекла), - прозрачная бесцветная жидкость без привкуса и запаха посторонних веществ.

Спирт этиловый пищевой получают микробиологическим способом, в основе которого лежит сбраживание сахара в спирт дрожжами семейства сахаромицетов.

Спирт этиловый ректификационный получают на брагоректифи­кационных и ректификационных установках из бражек крахмалосодержащего и сахаросодержащего сырья и из спирта-сырца, полученного из тех же видов сырья.

Переработка зерна и картофеля на спирт осуществляется по однотипной технологии и состоит из следующих стадий:

Подготовка сырья к переработке;

Разваривание крахмалосодержащего сырья;

Осахаривание крахмалосодержащего сырья;

Культивирование дрожжей;

Сбраживание осахаренной массы;

Перегонка бражки;

Ректификация спирта.

Линия начинается с комплекса оборудования для мойки, очистки и измельчения крахмалосодержащего сырья.

В состав этого комплекса входят картофелемойки, камнеловушки, водоотделители, барабанные камнеловушки, дробилки для измельчения картофеля и зерна, а также измельчители для тонкого измельчения зернового сырья.

Далее в состав линии входят комплекс, состоящий из установок для тепловой обработки крахмалосодержащего сырья - смесителей предразварников, варочных аппаратов и паросепараторов, аппаратов гидродинамической обработки замеса, обеспечивающих различные схемы разваривания.

Следующим в линии является комплекс оборудования для охлаждения и осахаривания заторов. В состав этого комплекса входят:

· аппараты с непрерывным осахариванием и вакуум-охлаждением,

· аппараты с двухступенчатым вакуум-охлаждением,

· а также аппараты с непрерывным охлаждением и осахариванием при атмосферном давлении.

Комплекс оборудования для брожения и культивирования дрожжей состоит из бродильных аппаратов и устройств для мойки, спиртоловушек и дрожжевых аппаратов.

В линии для производства спирта из мелассы комплекс оборудования состоит из рассиропников, аппаратов для размножения дрожжей и пеноловушек, а также устройств для отбора проб, измерения расходов мелассы и контроля плотности рассиропки.

Ведущий комплекс оборудования в линии предназначен для перегонки и ректификации спирта. В его составе имеются брагоректификационные и ректификационные установки, установки для получения безводного спирта, холодильники и кипятильники брагоперегонных аппаратов, вспомогательное оборудование ректификационных установок, а также оборудование для учета и хранения спирта.

4) Хлебопекарные дрожжи – одноклеточные микроорганизмы, относящиеся к классу грибов сахаромицетов.

Дрожжевое производство основано на способности дрожжевых клеток (микроорганизмов) расти и размножаться.

Процесс получения хлебопекарных дрожжей на дрожжевых заводах складывается из следующих стадий:

Приготовление питательной среды;

Выращивание маточных и товарных дрожжей;

Выделение товарных дрожжей из дрожжевой суспензии;

Формование и упаковка прессованных дрожжей;

Сушка дрожжей.

Получение дрожжей из спиртовой бражки на спиртовых заводах состоит из стадий:

Выделение дрожжей из зрелой бражки сепарированием;

Промывание и концентрирование дрожжевой суспензии;

Дозревание дрожжей;

Окончательное промывание и концентрирование дрожжей;

- прессование, формование и упаковка дрожжей;

Хранение.

Линия начинается с комплекса оборудования для обработки сырья, состоящего из аппаратов для приготовления питательных сред, сепараторов-кларификаторов для мелассы и пароконтактных установок для стерилизации.

Ведущий комплекс линии представляют дрожжерастильные аппараты, снабженные аэрационной системой для насыщения суспензии кислородом, и воздуходувные машины.

Следующий комплекс линии состоит из аппаратов для выделения дрожжей, в составе которого имеются дрожжевые сепараторы, фильтр-прессы и барабанные вакуум-фильтры.

Наиболее энергоемким комплексом оборудования линии являются сушильные установки, представленные конвейерными ленточными сушилками, установками с виброкипящим слоем, а также вакуумными и сублимационными сушилками.

Завершающий комплекс оборудования состоит из машин для формования и завертывания брикетов дрожжей.

На рис. 2.3 представлена машинно-аппаратурная схема линии производства хлебопекарных дрожжей.

5) Ферментные препараты представляют собой концентраты ферментов, полученные с помощью микроорганизмов. В состав ферментных препаратов наряду с ферментами входят и балластные вещества. Ферментные препараты применяют в пищевых производствах как катализаторы соответствующих биохимических процессов.

В качестве продуцентов ферментов используют разнообразные источники: растения, животные ткани и микроорганизмы.

Производство ферментных препаратов наиболее перспективным глубинным способом на жидких питательных средах можно разделить на следующие стадии:

Приготовление, стерилизация и охлаждение питательной среды;

Приготовление посевного материала и выращивание производственной культуры;

Отделение и сушка биомассы;

Фасовка отходов и отделение фильтрата;

Концентрирование и сушка концентрата;

Осаждение, сушка и стандартизация препарата;

Фасование препарата.

Линия начинается с комплекса оборудования, в состав которого входят:

· циклон – разгрузитель, экстракторы, стекатель, шнек-пресс, ленточный вакуум-фильтр, смеситель,

· а также нагревательная колонка, выдерживатель и теплообменники.

В состав линии входит комплекс оборудования, состоящий из инокулятора и ферментатора.

Следующий комплекс оборудования представляют камерный фильтр-пресс и барабанная сушилка.

Ведущим является комплекс оборудования, включающий вакуум-выпарные аппараты и распылительные (сублимационные) сушилки.

Завершающий комплекс оборудования линии состоит:

· из установки непрерывного осаждения, аппарата обсушки препарата, центрифуги, барабанной вакуум-сушилки, установки для измельчения и смешивания.

Финишным комплексом оборудования являются фасовочные машины.

Машинно-аппаратурная схема линии производства ферментных препаратов глубинным способом на жидких питательных средах представлена на рис. 2.4.

Лекция № 3. Транспортное оборудование в биотехнологии.

План лекции:

1) Насосы. Классификация насосов.

2) Центробежные насосы.

3) Осевые насосы.

4) Роторные насосы.

1) Насосы, используемые в микробиологической промышленности, делятся на две группы: динамические и объемные.

В динамических насосах преобразование энергии происходит под влиянием динамического взаимодействия между потоком жидкости и рабочим органом насоса.

В объемных насосах перемещение жидкости происходит при изменении объема рабочей камеры насоса при вращательном или возвратно-поступательном движении рабочего органа.

К основным характеристикам насосов относятся

Объемная производительность (м 3 /с);

Напор или давление создаваемое насосом, м. жид. ст. или Па;

Потребляемая мощность, кВт;

Допускаемая высота всасывания, м.

Классификация насосов используемых в биотехнологии:

I. Динамические насосы

1. Лопастные 2. Насосы трения

а) центробежные; а) струйные

б) диагоналевые; б) эрлифтные

в) осевые;

г) вихревые.

I.Объемные или роторные насосы

1. С возвратно-поступательным движением

а) поршневые;

б) плунжерные;

в) диафрагменные;

г) шланговые;

д) пневматические.

2.С вращательным движением.

а) шестеренные

б) винтовые;

в) шиберные или эксцентриково-лопастные

2) Центробежные насосы получили наибольшее распространение в биотехнологии.

Они могут быть:

Либо одноступенчатыми, либо многоступенчатыми.

Большая часть насосов в биотехнологии относится к насосам консольного типа.

Центробежный насос типа К состоит:

Из рабочей камеры – собственно корпуса насоса улиткообразной (спиральной) формы с всасывающим и нагнетательным патрубками,

Рабочего органа – рабочего многолопастного колеса (крыльчатки) закрепленного на горизонтальном валу,

И электродвигателя, который посредством муфты соединен с горизонтальным валом.

Все узлы насоса закреплены на литой чугунной раме. Рабочая спиральная камера насоса спереди закрыта крышкой отлитой совместно с входным патрубком.

Горизонтальный вал, установлен в корпусе на подшипниках качения и приводится в действие через муфту от электродвигателя.

Насосы типа К в основном предназначены для перекачивания воды и других маловязких жидкостей.

По такой же схеме выполнены и другие центробежные насосы предназначенные для агрессивных сред.

К ним относятся:

Консольные насосы на отдельной стойке;

Химические консольные насосы типа Х;

Химические консольные насосы для перекачивания жидкостей с твердыми включениями типа АХ;

Химические моноблочные насосы типа ХМ;

Химические погружные насосы типа ХП;

Химические погружные насосы для перекачивания жидкостей с твердыми включениями типа ХПА;

Химические с обогревом корпуса ХО;

Химические погружные насосы для перекачивания жидкостей с твердыми включениями и суспензий типа ПХП.

Они используются для перекачивания кислых, щелочных, слабокислых, аммиачных сред и кислот. Числа оборотов рабочих колес достигает от 24, 1 до 48,3 об/с.

Помимо этих насосов в биотехнологии используются герметические центробежные насосы во взрывозащищенном исполнении типа ЦНГ-70; ХГ; ХГВ.

Они используются для перекачивания агрессивных, токсичных, взрывоопасных и пожароопасных жидкостей.

Особенностью конструкции этих насосов является то, что они не имеют сальниковых и торцевых уплотнений.

3) В осевых насосах жидкость перемещается в осевом направлении. Приращение давления происходит за счет преобразования кинетической энергии в потенциальную.

Жидкость поступает в проточную полость 1 насоса (рис. 3.2), в которой находится рабочее колесо, состоящее из ступицы 2 с закрепленными на ней лопастями 3. Число лопастей обычно от 3 до 6.

Ступица рабочего колеса 2 насажена на вал 5, который приводится в действие электродвигателем.

При прохождении через рабочее колесо жидкость одновременно участвует в поступательном и вращательном движении.

После рабочего колеса жидкость поступает в неподвижно установленный направляющий аппарат 4, состоящий из ряда неподвижных лопастей.

Этот направляющий аппарат предназначен для устранения закрутки потока на выходе из насоса и уменьшения потерь напора внутри проточной полости.

Рабочее колесо по своей форме похоже на гребной винт. Лопасти его изогнуты по винтовой линии.

Осевые насосы могут быть:

Одноступенчатыми и многоступенчатыми,

Жестколопастными и поворотно-лопастными.

Регулирование подачи производится:

В жестколопастных насосах – изменением частоты вращения колеса,

А в поворотно-лопастных – изменением угла наклона лопастей.

Подача в них может достигать 750– 6000 м 3 /ч, а напоры от 1,3 до 23 м.

Используются они в качестве циркуляционных насосов в системах промышленного водоснабжения, а также для циркуляции суспензий в вакуум-выпарных установках.

4) Роторные насосы состоят, как правило, из трех частей:

Неподвижного корпуса со всасывающей и нагнетательной камерами;

И непрерывно вращающихся замыкателей, расположенных на роторе.

По виду замыкателей роторные насосы делятся:

На коловратные (или шестеренчатые);

Поршневые и плунжерные;

И шиберные (пластинчатые или эксцентриково-лопастные).

Одними из наиболее распространенных роторных насосов являются шестеренчатые или шестеренные насосы.

Они состоят из пары цилиндрических зубчатых колес расположенных внутри эллисообразного корпуса.

При вращении шестерен жидкость:

Из всасывающего патрубка попадает в пространство между соседними зубьями каждой из шестерен,

Достоинством этих насосов является простота конструкции, малые масса и габариты.

Эти насосы имеют следующие характеристики:

Вязкость перекачиваемых жидкостей составляет от 2 * 10 -6 до 10 -4 м 2 /с;

Подача (производительность) достигает до 200 м 3 /ч;

Напор до 250 метров жидкостного столба (т.е. давление 25 атм);

Температура перекачиваемой жидкости до 200 0 С.

Лекция № 4. Вспомогательное оборудование в биотехнологии.

План лекции:

1) Классификация емкостного оборудования. Резервуары.

2) Реакторы-смесители.

3) Питатели и дозаторы для сыпучих и жидких сред.

4) Тарельчатые и весовые дозаторы.

1) На любом предприятии большой объем занимают вспомогательные операции:

По транспортировке, хранению, дозированию сырья, материалов и продуктов.

Для этих целей используется вспомогательное оборудование, которое делится на несколько групп:

I. Емкостное оборудование.

А) Резервуары для длительного и временного хранения жидких материалов.

Б) Реакторы-смесители для смешивания компонентов питательных сред.

В) Мерники жидких сред.

Д) Сборники приемники для приема и кратковременного хранения жидких продуктов (культуральной жидкости и др.)

II. Насосы для транспортировки жидких материалов.

III. Дозаторы и питатели для сыпучих и жидких сред.

IV. Машины для мойки оборудования.

Длительному хранению в биотехнологии подвергаются:

Жидкие парафины, свекловичная меласса, метанол, этанол;

Ацетон и др. сырье.

Временному хранению подвергаются такие продукты как:

Растворы солей, компоненты жидких питательных сред и пр.

Резервуары длительного хранения это, как правило, резервуары большой емкости от 100 до 10000 м 3 .

Форма емкости – в основном, вертикальная цилиндрическая с соотношением диаметра к высоте D/H = (1,0 ÷ 2,0).

Для перемешивания жидкости, т.е. придания ей однородности резервуары снабжаются:

Либо переливными трубами, расположенными внутри емкости на разных уровнях;

Либо гомогенизирующими системами, расположенными вне емкости.

Резервуары снабжаются соответствующими средствами контроля и арматурой (штуцерами или патрубками):

Для подачи жидкости и сжатого воздуха в емкость;

Установки манометра контроля давления;

Установки предохранительного клапана для стравливания избыточного давления;

Установки указателя уровня жидкости в емкости;

Спуска остатка жидкости из емкости;

Трубой передавливания, люками и воздушником;

А также подогревателями, внутрь которых подается пар.

Ферментные препараты, антибиотики , бактериальные и вирусные препараты для защиты растений от вредителей и болезней, бактериальные удобрения, а также продукты комплексной переработки растительного сырья - фурфурол, ксилит и др. возникла в ходе современной научно-технической революции и основана на новейших достижениях технической микробиологии , химии, физики, химической технологии и кибернетики.

На научной основе создаются всё более совершенные инженерно-биологические системы, в которых свойственная микроорганизмам огромная энергия ферментативного превращения веществ используется для направленного синтеза продуктов, необходимых сельскому хозяйству и промышленности. Значительная часть продукции Микробиологическая промышленность употребляется для получения биологически полноценных комбикормов . В расчёте на 1 т дрожжей, добавленных в корма, на фермах дополнительно производится до 800-1200 кг свинины, или 1500-2000 кг мяса птицы (в живом весе), или 15-25 тыс. яиц, сберегается 3,5-5 т зерна. Экономическая эффективность животноводства ещё более возрастает, когда вместе с кормовыми дрожжами в состав рационов вводятся недостающие витамины и аминокислоты, кормовые антибиотики, ферментные препараты.

Повышению урожайности полей, огородов, садов и виноградников способствуют микробиологические средства для борьбы с вредителями и возбудителями болезней растений, а также бактериальные удобрения. Микробные и вирусные инсектициды безопасны для человека, полезных животных и насекомых, помогают охране природы и улучшают условия воспроизводства в растительном и животном мире.

Ферментные препараты намного ускоряют ряд технологических процессов обработки с.-х. сырья, повышают выход и улучшают качество продукции в пищевой, мясной, молочной и лёгкой промышленности, значительно увеличивают производительность труда. Ферментные препараты применяются также в химической промышленности (выпуск моющих средств высокого качества), перспективно использование их в чёрной металлургии (удаление жира с тонкокатаного стального листа), в системах очистки промышленных и бытовых сточных вод.

В 1966 предприятия микробиологического синтеза, находившиеся в ведении различных министерств и ведомств, были выделены в самостоятельную новую отрасль и при Совете Министров СССР было организовано Главное управление Микробиологическая промышленность Расширены существовавшие ранее научно-исследовательские и проектные организации, созданы новые всесоюзные научно-исследовательские институты: генетики и селекции промышленных микроорганизмов, микробиологических средств защиты растений и бактериальных препаратов, биотехнический институт, ферментное отделение при Всесоюзном научно-исследовательском институте синтезбелок.

За 1966-70 производство кормовых дрожжей увеличилось в 2,7 раза, выработка кормовых антибиотиков в 3,3 раза, ферментных препаратов в 2 раза. Освоен выпуск белково-витаминных концентратов (БВК) из углеводородов нефти, кормовых антибиотиков - кормогризина и бацитрацина, важнейшей аминокислоты - лизина, витамина 12 , эффективного средства защиты растений - энтобактерина и др. В 1972 по сравнению с 1970 производство кормовых дрожжей в СССР возросло на 40%, кормовых антибиотиков на 29%, ферментных препаратов в 2 раза, лизина в 5 раз. Выпуск продукции для сельского хозяйства на предприятиях Главмикробиопрома за 1971-72 увеличился в 1,7 раза. Среднегодовые темпы прироста промышленной продукции отрасли за 1971-72 значительно выше среднегодового прироста продукции в целом по промышленности СССР.

Построены крупные предприятия Микробиологическая промышленность - Лесозаводский (Приморский край) и Хакасский (Красноярский край) гидролизно-дрожжевые заводы мощностью по 28 тыс. т, Кировский биохимический завод мощностью 60 тыс. т кормовых дрожжей в год, Новогорьковский завод белково-витаминных концентратов из парафинов нефти мощностью 70 тыс. т в год, Вильнюсский (Литовской ССР) завод ферментных препаратов, Ливанский (Латвийской ССР) и Чаренцаванский (Армянской ССР) заводы лизина. Продолжается строительство крупнейших предприятий микробиологического синтеза. Для них создаётся высокопроизводительное оборудование большой единичной мощности. Один Светлоярский (Волгоградская обл.) завод производительностью 240 тыс. т в год белково-витаминных концентратов будет поставлять комбикормовой промышленности более 100 тыс. т переваримого белка и большое количество витаминов.

Новые высокоинтенсивные методы гидролиза древесины открывают перспективу эффективной комплексной химической и биохимической переработки древесного сырья и организации на этой основе производства пекарских дрожжей, пищевой глюкозы, лизина, глицерина, гликолей и др. ценной продукции.

Потребности народного хозяйства, и прежде всего сельского хозяйства, в продуктах микробиологического синтеза непрерывно возрастают. Создание мощной Микробиологическая промышленность - составная часть выработанной КПСС программы развития сельского хозяйства, укрепления его материально-технической базы. Вместе с тем Микробиологическая промышленность ускоряет технический прогресс в ряде отраслей промышленности - пищевой, лёгкой, тяжёлой. В химической промышленности, например, из аминокислот и др. белковых продуктов микробиологического синтеза можно организовать производство новых видов высококачественных искусственных волокон и плёнок - полноценных заменителей шерсти. Продукция Микробиологическая промышленность - лизин, ферментные и белковые препараты - в перспективе будет широко использоваться для обогащения хлеба, хлебных продуктов, пищевых концентратов белком и повышения т. о. их питательной ценности.

Микробиологическая промышленность быстро развивается и в др. социалистических странах. Кормовые дрожжи выпускают Болгария, Венгрия, ГДР, Польша, Румыния, Чехословакия, Югославия. В Болгарии, Румынии и Чехословакии организовано производство лизина, в Болгарии, Венгрии, Польше, Чехословакии, Югославии - кормовых антибиотиков, в Болгарии, Венгрии, ГДР, Польше и Чехословакии - ферментов.

В крупных капиталистических странах Микробиологическая промышленность получила значительное развитие. Так, в США выпуск антибиотиков для добавки в корма увеличился за 1965-70 с 1200 до 3318 т; за 1968-72 потребление ферментных препаратов увеличилось в 1,8 раза. В Японии микробиологический синтез лизина в 1973 составил 20 тыс. т, глутаминовой кислоты, применяемой в основном для улучшения вкусовых качеств пищи, - около 100 тыс. т, производство кормовых антибиотиков в 1970 - 4,7 тыс. м ; больших масштабов достиг выпуск антибиотиков для защиты с.-х. растений от болезней (около 80 тыс. т в 1970); производство ферментных препаратов для различных отраслей промышленности и сельского хозяйства в 1973 составило 13,3 тыс. т.

Лит.: Программа КПСС, М., 1973, с. 127; Материалы XXIV съезда КПСС, М., 1971; Государственный пятилетний план развития народного хозяйства СССР на 1971-1975 годы, М., 1972; Алиханян С. И., Селекция промышленных микроорганизмов, М., 1968; Беляев В. Д., Микробиология - сельскому хозяйству, «Партийная жизнь», 1971, № 12; Денисов Н. И., Кормовые дрожжи, М., 1971; «Журнал Всесоюзного химического общества им. Д. И. Менделеева», 1972, № 5 (номер посвящен промышленной микробиологии); Калунянц К. А., Ездаков Н. В., Производство и применение ферментных препаратов в сельском хозяйстве, М., 1972; Лизин - получение и применение в животноводстве, М., 1973.

Б. Я. Нейман.

Статья про слово "Микробиологическая промышленность " в Большой Советской Энциклопедии была прочитана 9439 раз

В структурном отношении микробиологическая промышленность включает две основных группы производств, отличающиеся друг от друга по используемому сырью:

· производство кормовых белковых веществ (главным образом кормовых дрожжей) из углеводородного сырья;

· производство кормовых дрожжей из сырья растительного происхождения, а также фурфурола и другой продукции, получаемой методом гидролиза древесины и растительных отходов сельского и лесного хозяйства.

Кроме того, к отрасли относятся производство аминокислот и ферментных препаратов, кормовых антибиотиков, бактериальных удобрений и микробиологических средств защиты растений и животных, а также различных растворителей из пищевого сырья, следовательно, в ее состав входят предприятия гидролизной промышленности и в то же время промышленности органического синтеза.

Продукция микробиологической промышленности способствует интенсификации сельского хозяйства, в первую очередь, животноводства, а также совершенствованию технологии в легкой, пищевой и некоторых других отраслях промышленного производства (в производстве моющих средств, для очистки сточных вод и др.).

Важным потребителем продукции является комбикормовая промышленность. Примерно 2/3 всей микробиологической продукции используется в сельском хозяйстве.

Кормовые дрожжи – основной продукт отрасли. Для животноводства они имеют такое же значение, как минеральные удобрения для земледелия.

Предприятия, использующие углеводородное сырье для производства дрожжей, ориентированы на центры нефтепереработки, что обусловлено достаточно высокой материалоемкостью производства. Для получения 1 т белка необходимо иметь 2,5 т углеводородного сырья, в качестве которого служат нефтяные дистилляторы и очищенные жидкие парафины нефти .

Производство дрожжей осуществляется в Беларуси на Новополоцком и Мозырском заводах белково-витаминных концентратов. Крупнейший из них – Новополоцкий завод БВК – начал свою работу в 1978 г., Мозырский – в 1983 г.

Гидролизное производство кормового белка на отходах древесины происходит в Бобруйске и Речице. Речицкий гидролизно-дрожжевой завод действует с 1931 г. Сначала он выпускал дубильный экстракт, а кормовые дрожжи поставляет хозяйствам с 1977 г. Бобруйский гидролизный завод дал первую продукцию – этиловый спирт – в 1936 г. После реконструкции в 1967 г. производит и кормовые дрожжи (более 10 тыс. т. в год).

К микробиологической отрасли относятся также:

· Несвижский биохимический завод, который производит около 25 т кормового антибиотика (биомицина) и до 10 млн. гектарных порций в год ризоторфина – бактериального удобрения для бобовых растений;



· Пинский биохимический завод по производству рибофлавина (витамин В 2);

· Обольский цех Новополоцкого завода БВК, который выпускает кормовую добавку – аминокислоту лизин (до 180 т в год).

В Беларуси работает крупнейшее в СНГ научно-производственное объединение "Белмедбиопром" (Минск) по выпуску биопрепаратов.

Следует сказать об экологической вредности как самого производства белка на основе углеводородного сырья, так и присутствии этого белка в кормах.

Заключение

Химическая промышленность – одна из авангардных отраслей научно-технической революции, так как современная химическая технология дает возможность превращать в ценные промышленные продукты практически неограниченный круг сырья.

Химический комплекс Беларуси специализируется на выпуске минеральных удобрений, синтетических волокон, автомобильных шин, резинотехнических изделий, пластмасс, лаков и красок. На его долю приходится около 15 % объема промышленной продукции.

Развитию экономического комплекса в Беларуси способствовал ряд факторов, важнейшими из которых являются наличие богатых отложений калийных солей, выгодность экономико-географического положения, обеспеченность водным источниками, наличие высококвалифицированных трудовых ресурсов.

Развитие химической промышленности в 60-е годы прошлого столетия происходило в условиях жесткого централизованного планирования, в рамках единого народнохозяйственного комплекса СССР. Производство многих видов продукции было сориентировано на привозное сырье и на вывоз его за пределы республики. Большинство производств характеризуется высокой энергоемкостью, что ведет к большим затратам при ограниченности собственных энергоресурсов и удорожанию продукции.



Созданная в 60-70-е годы с ориентацией на закупку зарубежных технологий и оборудования, производственная база химической индустрии уже к концу 80-х годов устарела морально и физически, износ основных производственных фондов составляет 60-80 %.

Необоснованно высокая территориальная концентрация химической промышленности в республике обусловила острые экологические проблемы в Солигорске, Новополоцке, Могилеве, Бобруйске, Светлогорске и других центрах.

Главной проблемой химического комплекса в настоящее время является его внутриструктурная перестройка, перепрофилирование производств на новые, более прогрессивные и конкурентоспособные виды продукции.

Литература

1. Беларусь: государство для человека. Нац. отчет о человеческом развитии – Мн.: Республика Беларусь, 1997– 104 с.

2. Геаграфiя Беларусi: Энцыклапедычны даведнIк. – Мн.: БелЭн, 1992– 381с.

3. О работе народного хозяйства Республики Беларусь за январь –декабрь 2001 г. – Мн: 2002.

4. Программа развития промышленного комплекса Республики Беларусь на 1998–2015 г.г// БЭЖ. – 1998. – №2.

5. Программа социально–экономического развития Республики Беларусь на 2001 – 2005 г.г. – Мн: 2001.

6. Промышленность Республики Беларусь. Стат. сб. – Мн.: 1995.

7. Рогач П.И., Сосновский В.М. Коммерческая география Республики Беларусь. – М., 1993.

8. Рогач П.И., Сосновский В.М. Размещение производительных сил. Учебн. пособие – Мн.: Экоперспективы, 2000.

9. Сацыяльна–эканамiчная геаграфiя Рэспублiкi Беларусь: Вучэб. дапам. для студэнтаў ВНУ/ Пад рэд. А.В. Саломкi, К.Р. Кiрэенка) – Мн: Унiверсiтэцкае, 1997. – 230 с.

10. Сiдор А. Рэгiянальныя асаблiвасцi структуры прамысловасцi Беларусi. // Геаграфiя: праблемы выкладання. – 1996. – вып.3

11. Геаграфiя Беларусi у пытаннях i адказах: Сiдор С. I. i iншыя. Дапаможнiк для вучняў. – Мн.: Нарасвета 1998. – 111 с.

12. Социально-экономическое развитие Республики Беларусь в 2000 году. Белорусская экономика: анализ, прогноз, регулирование. – 2001 – №2.

13. Хрущев А.Т. География промышленности СССР: Учебник для геогр. спец. вузов. –М.: Высш. шк., 1990. – 223 с.

14. Шимова О.С., Соколовский Н.К. Основы экологии и экономика природопользования: Учебник – Мн.: БГЭУ, 2001. – 368 с.